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Abstract. In this paper, we present a kind of semantics for constraints in clone-
enabled feature models, which resolves the problem of what kinds of constraint 
should be added to a feature model after some features are cloned. The semantics 
is composed of two patterns: the generating pattern and the adapting pattern, to 
address the two problems of what kind of constraints should be imposed on a 
clonable feature and its clones, and how an existing constraint should be trans-
formed in the context that features involved in the constraint are cloned, respec-
tively. After that, we propose a BDD-based approach to verifying clone-enabled 
feature models, an approach that makes efficient use of the BDD (binary decision 
diagram) data structures, by considering the specific characteristics of feature 
models’ verification. Experiments show that this BDD-based approach is more ef-
ficient and can verify more complex feature models than our previous method. 

Keywords: Feature models, Clonable features, Constraints, Customization, 
Verification. 

1   Introduction 

Feature models have been recognized as an important technique to capture and organ-
ize the reusable requirements in a specific software domain [7,8,5,2,1,9,13]. One 
important purpose of feature models is to facilitate the reusing of these reusable re-
quirements, and this purpose is usually achieved by using a customizing-based ap-
proach. That is, when developing a new application in a software domain, you do not 
need to elicit and analyze the application’s requirements from scratch, but can just 
customize the domain’s feature model (selecting a subset of features from it), and use 
the customizing result as a starting point for the application’s requirements engineer-
ing activity. 

One problem in a feature model’s customization is the verification problem [9]. This 
problem is caused by the fact that not any subset of features from a feature model is a 
valid customizing result. Usually, there are constraints among features, and a valid cus-
tomizing result must satisfy all these constraints. For this reason, when a customizing 
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decision1 is made on a feature model, we need to verify that those constraints among 
features are not violated by the decision (namely, the verification of feature models’ 
customization). Otherwise, the inappropriate decision will be propagated implicitly to 
latter customizing activities, and thus decrease the efficiency of customization. In addi-
tion, before customization, we should first ensure the correctness of constraints among 
features (namely, the verification of feature models’ constraints). 

The difficulty of the verification problem is caused by its NP-hard nature. In es-
sence, the verification of feature models is a constraint satisfaction problem (CSP), 
and researchers have recognized that the CSP is an NP-hard problem in general [11]. 
In our experience, when a feature model contains a large number of features with a 
complex set of constraints among them, the verification using a third-party’s model 
checker usually consumes an intolerable period of time, or even runs into a live-lock 
state. The NP-hard nature makes it difficult to find an efficient way to solve the veri-
fication problem of feature models. 

Another problem relating to the verification of a feature model’s customization is 
caused by the introduction of clonable features into the feature model2. In customization, 
the tree structure containing a clonable feature and all its offspring features can be cloned 
into many copies, and each copy can be customized individually. The problem caused by 
clonable features is that some constraints among features will lose their original semantics 
after a feature is cloned [3]. As a result, we will lose the capability of verifying whether a 
customizing result is a valid one based on the constraints among features. 

requires

(a) Feature model with three features A, B
and C. B is a clonable feature and has a
child feature C. A and C are optional 
features. There is a constraint: A requires C.

(b) If B is cloned into a set of features: B1
B2, …, and Bn, then, what is the semantic 
of the original constraint “A requires C”?  

[1..*]

?
AA CC AA C1C1 C2C2

The clonable tree structure 
containing the clonable 
feature B and all its 
offspring features through 
refinement relations BBB B1B1B1 B2B2B2

CnCn

BnBnBn

 

Fig. 1. The semantic-losing problems caused by clonable features: an example 

An example of the problem is depicted in Fig. 1 (see Table 1 for the exact meaning 
of the symbols). The constraint “A requires C” means that if A is bound (i.e. selected) 
in a customizing result, then C should also be bound in it. In customization, if C is 
cloned into a set of clones: Ci (i = 1, 2, …, n), how should the constraint “A requires 
C” be adapted to these clones? Should the binding of A require or be independent of 
the binding of these clones. 

According to the two problems above, the main contributions of this paper are two-
fold. For the semantic-losing problem, we present a kind of semantics for constraints 
                                                           
1 A customizing decision on a feature model means deciding whether to make a feature remain-

ing in the customizing result (binding a feature) or to remove the feature from the result (re-
moving a feature). 

2 In this paper, a feature model with clonable features is called a clone-enabled feature model. 
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in clone-enabled feature models. For the verification problem, we propose a BDD-
based approach to verifying both feature models’ constraints and customization, an 
approach that makes efficient use of the BDD (binary decision diagram) data struc-
tures based on the specific characteristics of feature models’ verification. 

The rest of this paper is organized as following. Section 2 introduces some pre-
liminary knowledge. Section 3 presents the semantics for constraints in clone-enabled 
feature models. Section 4 proposes the BDD-based approach to verifying feature 
models. Related work is discussed in Section 5. Finally, Section 6 concludes this 
paper with a short summary. 

2   Preliminary 

In this section, we first introduce a notation for clone-enabled feature models, and a 
propositional logic based definitions of constraints among features. After that, we 
clarify a fact about clonable features, that is, there is actually a clonable structure 
related to each clonable feature. 

2.1   A Notation for Feature Models 

Table 1. Symbols in the notation for feature models 

Symbol Name Explanation 

XX  

A mandatory feature 
with the name “X”. 

A mandatory feature must be selected in a customizing 
result, if its parent feature is selected. If its parent is re-
moved, it must also be removed. If it hasn’t a parent feature, 
then it must be selected in any customizing result. 

YY  

An optional feature 
with the name “Y”. 

An optional feature can either be selected in or be removed 
from a customizing result, if its parent feature is selected or 
it hasn’t a parent. If its parent is removed, it must also be 
removed. 

ZZ  

A feature that can be 
either mandatory or 
optional. 

In our presentation, we use this symbol to denote a feature 
that can be replaced by either a mandatory feature or an 
optional feature. 

ZZ  
A feature reference. A reference to a feature that has the name Z. 

[a..b] A symbol for clonable 
features. 

When the symbol is placed at the top of a feature, it means 
that the feature is clonable. In the symbol, a and b are two 
integers satisfying the property: 0 < a ≤ b, and the meanings 
is that the number of the clonable feature’ clones should not 
less than a and not greater than b. 

 

A refinement relation 
between two features. 

A refinement relation connects two features. The feature 
connecting to the non-arrow end is called the parent of the 
feature connecting to the arrow end. A feature can only have 
one parent feature at most. 

 
A refinement path 

In our presentation, we use this symbol to denote a path 
containing one or more refinement relations, and zero or 
more features. Each feature connects to two different re-
finement relations’ arrow and non-arrow ends, respectively. 
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Table 1. (continued) 

 
A requires constraint 
between two features. 

A requires constraint connects two features. The feature 
connecting to the non-arrow end is called the requirer, and the 
other the requiree. This constraint means that if the requirer is 
bound in a customizing result, the requiree also be bound. 

 
An excludes constraint 
between two features. 

An excludes constraint connects two features. This constraint 
means that the two features should not be both bound in a 
same customizing result. 

type

 

A binding predicate 
among a set of features 
and binding predicates 

The left end connects to a composite constraint or to one of 
the right ends of a binding predicate. The right ends connect 
to a set of features and binding predicates, respectively. We 
define three types of binding predicate: and (denoted by ∧); 
or (denoted by∨ ); xor (denoted by 1). See Table 2 for the 
formal definition of binding predicates. 

type
 

A composite constraint 
between two binding 
predicate 

We define two types of composite constraint: requires 
(denoted by ); excludes (denoted by ). See Table 3 
for their formal definition. 

Table 2. The formal definition of binding predicates. In this table, A and B denotes features, 
and p and q denotes binding predicates. For a feature F, bind(F) is a predicate; it is true if F is 
bound, and false if removed. In our notation, we only use binding predicates as constituent parts 
of the composite constraints, but not use them to represent individual constraints. 

or(A, …, B, …, p, …, q) and(A, …, B, …, p, …, q) xor(A, …, B, …, p, …, q) 

Binding 
Predicate 

AA BB
type

p

type

q  
AA BB

type

p

type

q  

AA BB
type

p

type

q  

Formal 
Definition 

bind(A)∨...∨¬bind(B) 
∨...∨p∨...∨¬q 

bind(A)∧... ∧¬bind(B)  
∧...∧p∧...∧¬q 

bind(A)⊗... ⊗¬bind(B) 
⊗...⊗p⊗...⊗¬q 

Table 3. The formal definition of composite constraints. In this table, p and q denotes binding 
predicates. In the situation that p and q only contains one feature, the two types composite 
constraints becomes the requires and the excludes constraints between two features. 

requires(p, q) excludes(p, q) 
Composite 
Constraint typetypetypetypep q

 
typetypetypetypep q

 

Formal 
Definition p → q p → ¬q 

2.2   The Clonable Structure Related to a Clonable Feature 

A clonable feature does not mean that only the feature itself can be cloned into many 
copies. Usually, it means that a structure related to the clonable feature can be cloned 
into many copies. The structure is formed from three kinds of element: the clonable 
feature, all its offspring features, and all the refinement relations between these features.  
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(a) Before cloning. (b) After cloning.  

Fig. 2. The clonable structure related to a clonable feature: an example 

Such a structure is exemplified in Fig. 2 (a), in which, feature B is clonable, and the 
dashed shape shows the clonable structure related to B. In customization, the cloning 
of B actually leads to the cloning of the related structure, and after cloning, each clone 
of B becomes a child feature of B’s parent feature A (see Fig. 2 (b)). For any feature in 
a clonable structure, the property whether it is mandatory or optional is not changed 
after cloning. In the rest of this paper, we use the cloning of a clonable feature to 
denote the meaning of the cloning of the clonable structure related to the clonable 
feature. For a clonable feature F, we use cs(F) to denote the set that contains all the 
elements in the clonable structure related to F. 

3   Semantics for Constraints in Clone-Enabled Feature Models 

In this section, we present a kind of semantics for constraints in clone-enabled feature 
models. The semantics is composed of two patterns: the generating pattern, and the 
adapting pattern. The former handles the problem of what kind of constraints should 
be imposed on a clonable feature and its clones. The latter deals with the problem of 
how an existing constraint should be adapted in the context that some features in-
volved in the constraint are cloned. Before giving more details about the semantics, 
we first introduce a description structure for the two patterns’ definitions. 

3.1   A Description Structure for the Generating and the Adapting Patterns 

Table 4 shows the components contained in the description structure and the descrip-
tions of these components. 

3.2   The Generating Pattern 

One question related to a clonable feature is whether we should impose any constraint 
on the feature and its clones. In this paper, we adopt a positive answer to this question. 
We treat the relation between a feature and its clones as the type-instance relation. One 
understanding of a type is that it is a set consisting of all the type’s instances. Based on 
this understanding, we can derive that, if a type is removed, any of its instances should 
also be removed. However, this understanding does not tell us how many instances 
should be bound if the type is bound. 
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Table 4. Components in the description structure 

Components Description 

Pattern Name A meaningful name for a pattern. 

Clonable Feature A clonable feature. 

Cloned Features All the clones of the clonable feature. 

C
on

te
xt

 

Source Constraint 
An existing constraint that will be transformed by the 
pattern. 

Trigger Condition 

A condition satisfied by components in the context. If the 
trigger condition is true, the pattern must be applied, 
that is, transforming the source constraint into the target 
constraints. 

Target Constraints Constraints transformed from the source constraint. 

Table 5. Definition of the generating pattern 

Pattern Name Generating 

Clonable Feature F 

Cloned Features Fi, (i = 1, 2, …, n) 

C
on

te
xt

 

Source Constraint <Empty> 

Trigger Condition true 
Case 1: 

single- binding 
Case 2: 

multi-binding 
Case 3: 

all-binding 

Target Constraints 
FF

F1F1

F2F2

FnFn  

FF

F1F1

F2F2

FnFn  

FF

F1F1

F2F2

FnFn
 

Based on the analysis above, we developed the generating pattern (see Table 5), to 
address the problem of what kind of constraints should be imposed on a clonable 
feature and its clones. The name “generating” means that some constraints are gener-
ated after the cloning of a clonable feature. The generating pattern defines three cases 
of generated constraints. For a clonable feature F, if it is bound, the single-binding 
will require that exactly one of its clones should be bound, the multi-binding will 
require that one or more clones should be bound, and the all-binding will require that 
all it clones should be bound. If F is not bound, all the three cases will require that 
none of its clones can be bound. 

Since there are three kinds of target constraints in the pattern, a related question is 
which kind should be selected when applying the pattern. We think that the question 
should be answered according to more specific semantics related to each clonable 
feature. A special situation is that: when a clonable feature is mandatory, only the all-
binding target constraints are suitable. Otherwise, the mandatory feature may need to 
be changed into optional. 
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3.3   The Adapting Pattern 

In a clone-enabled feature models, a problem related to a constraint is that how the 
constraint should be adapted in the context that one or more features involved in the 
constraint belong to a clonable structure and that the structure is cloned. 

Table 6. Definition of the adapting pattern 

Pattern Name Adapting 

Clonable Feature F 

Cloned Features Fi, (i = 1, 2, …, n). 

C
on

te
xt

 

Source Constraint const(A, B, …, C, D, …, E): a constraint among a set of features. 

Trigger Condition {A, B, …, C, D, …, E} ∩ cs(F) = {A, B, …, C} ≠ ∅ 

Target Constraints 
const(A, B, …, C, D, …, E) ∧  

( ),...2,1( ni=∧ (bind(Fi)→ const(Ai, Bi, …, Ci, D, E, …, F))) 

For this problem, we introduce the generating pattern (see Table 6). The name 
“adapting” means that some existing constraints should be adapted after the cloning 
of a clonable feature F. The target constraints defined in the adapting pattern contains 
two parts. The first part contains exactly the source constraint, which means the 
source constraint is still maintained after the cloning of F (this is an important charac-
teristic of the generating pattern). The second part contains a set of constraints for 
each of the clones of F, respectively. For each clone Fi, the constraint requires that if 
Fi is bound, then the original constraint should also be satisfied by replacing each 
feature X in the constraint that belongs to cs(F) with its clone Xi. 

4   BDD-Based Verification of Feature Models 

As we can see in Section 3, after a sequence of clone transformations, even simple bi-
nary constraints (i.e. requires and excludes) could be transformed into complex compos-
ite constraints. This further increases the difficulty of feature models’ verification. 

In this section, we present a BDD-based approach to verifying feature models. 
First, we introduce three verification criteria, which are proposed in our previous 
work [13], and have been proven to be effective in detecting deficiencies in feature 
models [14]. Base on the three criteria, we proposed a BDD-based algorithm that can 
check the three criteria’s satisfiability by only traversing once to the nodes in a BDD 
(binary decision diagram). We also provide two strategies to improve the efficiency 
of creating a feature model’s BDD. Experiments show that this approach is more 
efficient and can verify more complex feature models than our previous method. 

4.1   Three Criteria for Feature Models’ Verification 

From the viewpoint of feature models’ verification, a feature model can be abstracted 
into a set of features and a set of constraints among features [13]. According to a 
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feature’s binding state, features in a feature models can be partitioned into three sets. 
The bound set contains exactly all the features having been bound, the removed set 
contains exactly all the features having been removed, and the undecided set contains 
all the other features which will be bound or removed in later customizing activities. 
A customizing decision to an undecided feature either binds the feature or removes it. 

Given a feature model, if any of the following three criteria is not satisfied, there 
must be errors or deficiencies either in the constraints among features or in the cus-
tomizing decisions to features [13]. 

Criterion 1: There exists at least a set of customizing decisions to all features in the 
undecided set that will not violate any constraints among features. 

Criterion 2: Each feature in the undecided set has a chance to be bound, without vio-
lating any constraints among features. 

Criterion 3: Each feature in the undecided set has a chance to be removed, without 
violating any constraints among features. 

Von der Maßen and Lichter [15] have created a deficiency framework for feature 
models. Our previous investigation [14] shows that the three criteria can detect most 
kinds of anomaly and inconsistency among constraints at an early stage (i.e. before 
customization). Further details about the three criteria and the deficiency framework 
can be found in [13,14,15]. 

Although the three criteria are very effective, the checking of them is not easy. Cri-
terion 1 is a binary CSP, and the time complexity of its checking is O(2n), where n is 
the number of features in the undecided set. For each undecided feature, Criterion 2 
and 3 can also be easily transformed into two binary CSPs with the time complexity 
of O(2n), respectively. That is to say, the three criteria’s checking could be trans-
formed into the checking of 2n+1 binary CSPs, and the total time complexity would 
be O(2n+2n⋅2n), which equals to O((2n+1)⋅2n). 

4.2   BDD-Based Checking Algorithm for the Three Criteria 

Although the three criteria’s checking could to be transformed into the checking of 
2n+1 CSPs, there is a shortcoming in such an approach, that is, it treats the 2n+1 
CSPs as independent problems, without considering the connections between these 
problems. In fact, we could find that the 2n+1 CSPs are very similar; the only differ-
ence between them is that a different undecided feature’s binding state is assigned to 
bound or removed. If the similarity could be fully explored, the time complexity 
would be further decreased. 

Based on this observation, we investigate the BDD technique and find an algorithm 
that can check the three criteria’s satifiability by only traversing once to the nodes in a 
BDD. Before giving more details about the algorithm, we first give a short introduc-
tion to BDDs. 

In general, a BDD is a compact data structure for representing a Boolean function 
[6]. Fig. 3 shows an example of BDDs. We can see that a BDD is composed of multi-
ple layers, each layer contains a set of nodes related to a propositional variable, and 
each node connects to right layers’ nodes through a true branch or a false branch, 
which means that the node is assigned the value of true or false, respectively. The 
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rightmost layer contains two nodes of true and false, which denotes the Boolean func-
tion’s two possible value. A path from the leftmost node to the true node means that 
the function’s value is true in the value assignment indicated by the path, and a path 
to the false node means the function’s value is false. 

a

c

b

b
d

d true

false

a b c d f

The true path of a.

The false path of a.  

Fig. 3. The BDD representation of Boolean functions: an example. This show a BDD of the 
Boolean function: f = (a ↔ b) ∧ (c ↔ b), where, a, b, c, and d are four propositional variables. 
The path “a true, b true, c false, d false, true” means that, in the following value assignment: 
a=true, b=true, c=false, and d=false, the function f’s value is true. Similarly, the path “a false, 
b true, false” means that f’s value is false in the value assignment indicated by the path. 

Now, we explain how to check the three criteria’s satisfiability efficiently, in the 
context that the set of constraints among features are transformed into a BDD3. For 
Criterion 1, the checking method is simple; if there is a node whose true path or false 
path connects to the true node, then this criterion is satisfied. For Criterion 2 and 3, 
we use the idea illustrated in Fig. 4 to check their satisfiability. 

A
true

false

X A Y

A

A

B
true

false

X B Y

B

B
 

Fig. 4. The idea to check the satisfiability of Criterion 2 and 3. For a feature A, in order to 
check whether it has a chance to be bound, we only need to examine whether all the true paths 
of A’s nodes connect to the false node (see the left part). The answer yes means that A has no 
chance to be bound, and the answer no means A still has the chance. Following the same idea, 
we can check whether a feature has a chance to be removed. The only difference is to examine 
whether all the false paths of the feature’s nodes connect to the false node (see the right part). 

To realize the idea above into an algorithm, we have to consider the situation that a 
BDD contains crossing paths. A crossing path eliminates some nodes from a BDD in 
order to maintain the BDD’s compactness. We need to recover those eliminated 
nodes, before applying the idea above. Fig. 5 shows an example of this situation. 

Based on the general idea and the special situation, we develop the following algo-
rithm to check the satisfiability of Criterion 2 and 3, an algorithm that take a breadth-
first traversal to a BDD’s nodes. 

                                                           
3 See section 4.3 for how to transform a set of constraints among features into to a BDD. 
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A
true

false

X A Y

A
A

A crossing path. A
true

false

X A Y

A
A

A

(a). A BDD contains crossing paths. (b). The redundant representation 
of the BDD in (a). 

The eliminated node.

 

Fig. 5. A BDD containing crossing paths and its redundant representation. In (a), although all 
the true paths of A’s nodes connect to the false node, A still has a chance to be bound. This is 
caused by the crossing path that eliminates a node of A. If recovering the eliminated node, we 
can get a redundant representation of the BDD. In the redundant BDD, there is a node of A, 
whose true path does not connect to the false node, and thus A still could be bound. 

A BDD-based algorithm for Criterion 2 and 3. Where, get_true_branch(Node e) 
returns e’s child node through the true path, get_false_branch(Node e) returns e’s 
child node through the false path, and isNonCrossedLayer(Layer layer) returns 
whether the layer is crossed by any crossing paths. The three functions are created in 
a BDD’s construction. 

Input: The root of BDD 
Output: A set that contains all the features violating Crite-
rion 2 or 3.  

Verify(root){  
   Set violatedFeatures :=  ∅; 
   for (layer = getLayer(root) to getLayer(0)){ 
       If (isNonCrossedLayer(layer)=true){ 
           isCriterion1Violated := true; 
           isCriterion2Violated := true;  
           for each node e of layer{ 
               if (get_true_branch(e)!=false_node) 
                  isCriterion1Violated := false; 
               if (get_false_branch(e)!=false_node) 
                  isCriterion2Violated := false;  
          } 
          if (isCriterion1Violated = true || 
              isCriterion2Violated = true    ){  
               featureName = getFeatureName(layer)  
                 violatedFeatures.add(featureName);  
          } 
       } 
   } 
    return violatedFeatures; 
} 

4.3   Constructing a BDD for a Feature Models 

Constructing a BDD for a feature model is to transform the conjunction of constraints 
in the feature model into a BDD. There are two issues to be considered: 
 



196 W. Zhang et al. 

1. How to get a BDD with a smaller size?  
2. How to ensure that the constructing process consume less memory space?  

We adopt two strategies to deal with the two issues. 

Strategy 1: Use the order of the depth-first traversal to feature trees as the variable 
order of BDD. 

BB YY

(a). Feature Model. (b). Constraint.

AA XX

BB

AA

CC

B requires A
∧

Y requires X

B requires A
∧

C requires A

B
Y

A
X

true

false

B A Y X

(c). The smallest BDD.

B
C

A

true

false

B C A

Case 1:

Case 2:

 

Fig. 6. The smallest BDDs in two basic cases. In case 1 with two feature trees, a smallest BDD 
has a variable order, in that, any child feature precedes its parent or the inverse, and variables 
belonging to different feature trees do not mix. In case 2 with a parent feature and its two chil-
dren, a smallest BDD has a variable order, in that, the parent is the last or the first variable. A 
depth-first order to feature trees (whether in pre-order or post-order) can satisfy both of the two 
cases. The analysis above can also apply to feature models with multiple feature trees, in each 
of which, there may be multi-levels of features, and a feature may have three or more children. 

This strategy is concluded from two basic cases in feature models (see Fig. 6). In 
the two cases, we only consider the feature trees (formed by features and refinement 
relations between them) in feature models. As recognized in our previous research 
[13], for a refinement between two features, there is a constraint: child requires par-
ent. Based on these constraints, we find that it leads to a smallest BDD by using the 
variable order generated from the depth-first traversal to feature trees. 

Strategy 2: Construct BDDs for each of the feature trees and for each of the con-
straints in a feature model, then combine these BDDs into the final BDD. 

The purpose of this strategy is trying to decrease the possibility that the intermedi-
ate results in BDDs’ construction consume huge memory space. The idea behind this 
strategy is to avoid considering too many constraints at one time. For the words limi-
tation, we will not give further details about this strategy. 

4.4   Experiments 

To examine the approach’s efficiency and capability, we apply it to verify two sets of 
designed feature models. One set contains 20 feature models only with binary con-
straints, and the number of features in them varies from 10, 20 to 90, and then from 
100, 200, to 1000. The other set contains 20 feature models with both binary and 
composite constraints, and the number of features also varies from 10 to 1000. We 
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also use the same two sets of feature models to examine the effect of our previous 
SMV-based method for feature models’ verification [13], a method which transforms 
feature models’ verification into 2n+1 independent CSPs, and uses the model checker 
SMV [10] to verify these CSPs. The environment for our experiments is a notebook 
with a 2.0G HZ CPU, 512 MB memory, and a Windows XP OS. 
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Fig. 7. The result of experiments 

Fig. 7 shows the result of our experiments. We can see that, the SMV-based ap-
proach can not handle feature models with more than 100 features, while for feature 
models with 100 features, the BDD-based approach only needs a time less than one 
second. Furthermore, the BDD-based approach can verify complex feature models with 
500 features using 66.7 seconds, and verify simple feature models with 1000 features 
using 37.2 seconds. The experiments show that the BDD-based approach is more effi-
cient and can verify more complex feature models than the SMV-based approach. 

5   Related Work  

Feature models are first proposed by Kang et al. [7] in the feature-oriented domain 
analysis (FODA) method, and then developed by many researchers in the field of 
software reuse [8,5,2,9]. In these researchers, Czarnecki et al. introduced feature 
models into the generative software reuse [2] and proposed the concepts of clonable 
features [4]. Czarnecki et al. also recognized the semantic-losing problem caused by 
clonable features [3], but they did not give a systematic method to resolve this prob-
lem. As far as our knowledge, we do not find any researchers who have given solu-
tions to this problem. 

Mannion [9] proposed a verifying method of feature models, in which, constraints 
among features are formalized using the propositional logic. Based on his research, 
we classified constraints in feature models into several types. For each of them, we 
gave its formal definition, and a graphic representation of it, which is used for feature 
modelers to create constraints in an easy way. We also proposed the three criteria to 
verify feature models [13], and have examined their effectiveness according to the 
deficiency framework created by Von der Maßen and Lichter [15]. However, for the 
checking problem of the three criteria, we transformed it into 2n+1 independent bi-
nary CSPs, without considering the connections between them. 
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Our research on BDD-based verification is inspired by Czarnecki’s research [3], in 
which, Czarnecki used a commercial BDD package to verifying properties of feature 
models. However, it seems that Czarnecki only considered simple binary constraints 
between features (i.e. requires, and excludes) and those local composite constraints 
between a feature and its children. In addition, Czarnecki did not give details about 
how to decide the BDD’s variable order for a feature model, and how to use a BDD in 
efficient ways. 

Batory [1] proposed a LTMS-based approach to detect deficiencies in constraints 
or customization. As we have pointed out [14], this algorithm can check most of the 
deficiencies that our criteria can check, but in a later stage (i.e. after certain customiz-
ing decisions have been made). In addition, this approach’s time complexity is same 
with our approach, namely, O(2n+1). Where, n is the number of features in a feature 
model. In this approach, the transformation from constraints to a CNF (conjunctive 
normal form) needs a O(2n) time, and the checking of deficiencies also needs a O(2n) 
time, since it have to traverse all the disjunction clauses in the CNF. In our approach, 
a BDD’s construction needs a O(2n) time, and the traversal of a BDD also needs a 
O(2n) time. 

In addition, based on our previous work, we develop a graphical notation for con-
straints in clonable-enabled feature models in this paper. We do not notice that there 
are other researchers who have proposed such kind of graphical notations. 

6   Conclusions 

In this paper, we provided a kind of semantics for constraints in clone-enabled feature 
models. The semantics resolved two problems related to clone-enabled feature mod-
els. One is the problem of what kind of constraints should be imposed on a clonable 
feature and its clones, and the other is the problem of how an existing constraint 
should be transformed after some features in the constraint are cloned. To verify fea-
ture models with complex constraints, we proposed a BDD-based approach, which 
makes efficient use of the BDD data structures by considering the characteristics of 
the three verification criteria for feature models. Experiments showed that the BDD-
based approach proposed in this paper is more efficient and can handle more complex 
feature models than our previous approach. 
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