
H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 186–199, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A BDD-Based Approach to Verifying Clone-Enabled
Feature Models’ Constraints and Customization

Wei Zhang1,2, Hua Yan1,2, Haiyan Zhao1,2, and Zhi Jin3

1 Key Laboratory of High Confidence Software Technology,
Ministry of Education of China

2 Insititute of Software, School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871, China

3 Chinese Academy of Sciences, Beijing, China
{zhangw,yanhua07,zhhy}@sei.pku.edu.cn, zhijin@amss.ac.cn

Abstract. In this paper, we present a kind of semantics for constraints in clone-
enabled feature models, which resolves the problem of what kinds of constraint
should be added to a feature model after some features are cloned. The semantics
is composed of two patterns: the generating pattern and the adapting pattern, to
address the two problems of what kind of constraints should be imposed on a
clonable feature and its clones, and how an existing constraint should be trans-
formed in the context that features involved in the constraint are cloned, respec-
tively. After that, we propose a BDD-based approach to verifying clone-enabled
feature models, an approach that makes efficient use of the BDD (binary decision
diagram) data structures, by considering the specific characteristics of feature
models’ verification. Experiments show that this BDD-based approach is more ef-
ficient and can verify more complex feature models than our previous method.

Keywords: Feature models, Clonable features, Constraints, Customization,
Verification.

1 Introduction

Feature models have been recognized as an important technique to capture and organ-
ize the reusable requirements in a specific software domain [7,8,5,2,1,9,13]. One
important purpose of feature models is to facilitate the reusing of these reusable re-
quirements, and this purpose is usually achieved by using a customizing-based ap-
proach. That is, when developing a new application in a software domain, you do not
need to elicit and analyze the application’s requirements from scratch, but can just
customize the domain’s feature model (selecting a subset of features from it), and use
the customizing result as a starting point for the application’s requirements engineer-
ing activity.

One problem in a feature model’s customization is the verification problem [9]. This
problem is caused by the fact that not any subset of features from a feature model is a
valid customizing result. Usually, there are constraints among features, and a valid cus-
tomizing result must satisfy all these constraints. For this reason, when a customizing

 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 187

decision1 is made on a feature model, we need to verify that those constraints among
features are not violated by the decision (namely, the verification of feature models’
customization). Otherwise, the inappropriate decision will be propagated implicitly to
latter customizing activities, and thus decrease the efficiency of customization. In addi-
tion, before customization, we should first ensure the correctness of constraints among
features (namely, the verification of feature models’ constraints).

The difficulty of the verification problem is caused by its NP-hard nature. In es-
sence, the verification of feature models is a constraint satisfaction problem (CSP),
and researchers have recognized that the CSP is an NP-hard problem in general [11].
In our experience, when a feature model contains a large number of features with a
complex set of constraints among them, the verification using a third-party’s model
checker usually consumes an intolerable period of time, or even runs into a live-lock
state. The NP-hard nature makes it difficult to find an efficient way to solve the veri-
fication problem of feature models.

Another problem relating to the verification of a feature model’s customization is
caused by the introduction of clonable features into the feature model2. In customization,
the tree structure containing a clonable feature and all its offspring features can be cloned
into many copies, and each copy can be customized individually. The problem caused by
clonable features is that some constraints among features will lose their original semantics
after a feature is cloned [3]. As a result, we will lose the capability of verifying whether a
customizing result is a valid one based on the constraints among features.

requires

(a) Feature model with three features A, B
and C. B is a clonable feature and has a
child feature C. A and C are optional
features. There is a constraint: A requires C.

(b) If B is cloned into a set of features: B1
B2, …, and Bn, then, what is the semantic
of the original constraint “A requires C”?

[1..*]

?
AA CC AA C1C1 C2C2

The clonable tree structure
containing the clonable
feature B and all its
offspring features through
refinement relations BBB B1B1B1 B2B2B2

CnCn

BnBnBn

Fig. 1. The semantic-losing problems caused by clonable features: an example

An example of the problem is depicted in Fig. 1 (see Table 1 for the exact meaning
of the symbols). The constraint “A requires C” means that if A is bound (i.e. selected)
in a customizing result, then C should also be bound in it. In customization, if C is
cloned into a set of clones: Ci (i = 1, 2, …, n), how should the constraint “A requires
C” be adapted to these clones? Should the binding of A require or be independent of
the binding of these clones.

According to the two problems above, the main contributions of this paper are two-
fold. For the semantic-losing problem, we present a kind of semantics for constraints

1 A customizing decision on a feature model means deciding whether to make a feature remain-

ing in the customizing result (binding a feature) or to remove the feature from the result (re-
moving a feature).

2 In this paper, a feature model with clonable features is called a clone-enabled feature model.

188 W. Zhang et al.

in clone-enabled feature models. For the verification problem, we propose a BDD-
based approach to verifying both feature models’ constraints and customization, an
approach that makes efficient use of the BDD (binary decision diagram) data struc-
tures based on the specific characteristics of feature models’ verification.

The rest of this paper is organized as following. Section 2 introduces some pre-
liminary knowledge. Section 3 presents the semantics for constraints in clone-enabled
feature models. Section 4 proposes the BDD-based approach to verifying feature
models. Related work is discussed in Section 5. Finally, Section 6 concludes this
paper with a short summary.

2 Preliminary

In this section, we first introduce a notation for clone-enabled feature models, and a
propositional logic based definitions of constraints among features. After that, we
clarify a fact about clonable features, that is, there is actually a clonable structure
related to each clonable feature.

2.1 A Notation for Feature Models

Table 1. Symbols in the notation for feature models

Symbol Name Explanation

XX

A mandatory feature
with the name “X”.

A mandatory feature must be selected in a customizing
result, if its parent feature is selected. If its parent is re-
moved, it must also be removed. If it hasn’t a parent feature,
then it must be selected in any customizing result.

YY

An optional feature
with the name “Y”.

An optional feature can either be selected in or be removed
from a customizing result, if its parent feature is selected or
it hasn’t a parent. If its parent is removed, it must also be
removed.

ZZ

A feature that can be
either mandatory or
optional.

In our presentation, we use this symbol to denote a feature
that can be replaced by either a mandatory feature or an
optional feature.

ZZ
A feature reference. A reference to a feature that has the name Z.

[a..b] A symbol for clonable
features.

When the symbol is placed at the top of a feature, it means
that the feature is clonable. In the symbol, a and b are two
integers satisfying the property: 0 < a ≤ b, and the meanings
is that the number of the clonable feature’ clones should not
less than a and not greater than b.

A refinement relation
between two features.

A refinement relation connects two features. The feature
connecting to the non-arrow end is called the parent of the
feature connecting to the arrow end. A feature can only have
one parent feature at most.

A refinement path

In our presentation, we use this symbol to denote a path
containing one or more refinement relations, and zero or
more features. Each feature connects to two different re-
finement relations’ arrow and non-arrow ends, respectively.

 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 189

Table 1. (continued)

A requires constraint
between two features.

A requires constraint connects two features. The feature
connecting to the non-arrow end is called the requirer, and the
other the requiree. This constraint means that if the requirer is
bound in a customizing result, the requiree also be bound.

An excludes constraint
between two features.

An excludes constraint connects two features. This constraint
means that the two features should not be both bound in a
same customizing result.

type

A binding predicate
among a set of features
and binding predicates

The left end connects to a composite constraint or to one of
the right ends of a binding predicate. The right ends connect
to a set of features and binding predicates, respectively. We
define three types of binding predicate: and (denoted by ∧);
or (denoted by∨); xor (denoted by 1). See Table 2 for the
formal definition of binding predicates.

type

A composite constraint
between two binding
predicate

We define two types of composite constraint: requires
(denoted by); excludes (denoted by). See Table 3
for their formal definition.

Table 2. The formal definition of binding predicates. In this table, A and B denotes features,
and p and q denotes binding predicates. For a feature F, bind(F) is a predicate; it is true if F is
bound, and false if removed. In our notation, we only use binding predicates as constituent parts
of the composite constraints, but not use them to represent individual constraints.

or(A, …, B, …, p, …, q) and(A, …, B, …, p, …, q) xor(A, …, B, …, p, …, q)

Binding
Predicate

AA BB
type

p

type

q
AA BB

type

p

type

q

AA BB
type

p

type

q

Formal
Definition

bind(A)∨...∨¬bind(B)
∨...∨p∨...∨¬q

bind(A)∧... ∧¬bind(B)
∧...∧p∧...∧¬q

bind(A)⊗... ⊗¬bind(B)
⊗...⊗p⊗...⊗¬q

Table 3. The formal definition of composite constraints. In this table, p and q denotes binding
predicates. In the situation that p and q only contains one feature, the two types composite
constraints becomes the requires and the excludes constraints between two features.

requires(p, q) excludes(p, q)
Composite
Constraint typetypetypetypep q

typetypetypetypep q

Formal
Definition p → q p → ¬q

2.2 The Clonable Structure Related to a Clonable Feature

A clonable feature does not mean that only the feature itself can be cloned into many
copies. Usually, it means that a structure related to the clonable feature can be cloned
into many copies. The structure is formed from three kinds of element: the clonable
feature, all its offspring features, and all the refinement relations between these features.

190 W. Zhang et al.

BB

AA

C DCC DD

[1..*]

E F GEE FF GG

B1B1

AA

C1 D1C1C1 D1D1

E1 F1 G1E1E1 F1F1 G1G1

BnBn

Cn DnCnCn DnDn

En Fn GnEnEn FnFn GnGn

The clonable
structure related
to the clonable
feature B

……

(a) Before cloning. (b) After cloning.

Fig. 2. The clonable structure related to a clonable feature: an example

Such a structure is exemplified in Fig. 2 (a), in which, feature B is clonable, and the
dashed shape shows the clonable structure related to B. In customization, the cloning
of B actually leads to the cloning of the related structure, and after cloning, each clone
of B becomes a child feature of B’s parent feature A (see Fig. 2 (b)). For any feature in
a clonable structure, the property whether it is mandatory or optional is not changed
after cloning. In the rest of this paper, we use the cloning of a clonable feature to
denote the meaning of the cloning of the clonable structure related to the clonable
feature. For a clonable feature F, we use cs(F) to denote the set that contains all the
elements in the clonable structure related to F.

3 Semantics for Constraints in Clone-Enabled Feature Models

In this section, we present a kind of semantics for constraints in clone-enabled feature
models. The semantics is composed of two patterns: the generating pattern, and the
adapting pattern. The former handles the problem of what kind of constraints should
be imposed on a clonable feature and its clones. The latter deals with the problem of
how an existing constraint should be adapted in the context that some features in-
volved in the constraint are cloned. Before giving more details about the semantics,
we first introduce a description structure for the two patterns’ definitions.

3.1 A Description Structure for the Generating and the Adapting Patterns

Table 4 shows the components contained in the description structure and the descrip-
tions of these components.

3.2 The Generating Pattern

One question related to a clonable feature is whether we should impose any constraint
on the feature and its clones. In this paper, we adopt a positive answer to this question.
We treat the relation between a feature and its clones as the type-instance relation. One
understanding of a type is that it is a set consisting of all the type’s instances. Based on
this understanding, we can derive that, if a type is removed, any of its instances should
also be removed. However, this understanding does not tell us how many instances
should be bound if the type is bound.

 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 191

Table 4. Components in the description structure

Components Description

Pattern Name A meaningful name for a pattern.

Clonable Feature A clonable feature.

Cloned Features All the clones of the clonable feature.

C
on

te
xt

Source Constraint
An existing constraint that will be transformed by the
pattern.

Trigger Condition

A condition satisfied by components in the context. If the
trigger condition is true, the pattern must be applied,
that is, transforming the source constraint into the target
constraints.

Target Constraints Constraints transformed from the source constraint.

Table 5. Definition of the generating pattern

Pattern Name Generating

Clonable Feature F

Cloned Features Fi, (i = 1, 2, …, n)

C
on

te
xt

Source Constraint <Empty>

Trigger Condition true
Case 1:

single- binding
Case 2:

multi-binding
Case 3:

all-binding

Target Constraints
FF

F1F1

F2F2

FnFn

FF

F1F1

F2F2

FnFn

FF

F1F1

F2F2

FnFn

Based on the analysis above, we developed the generating pattern (see Table 5), to
address the problem of what kind of constraints should be imposed on a clonable
feature and its clones. The name “generating” means that some constraints are gener-
ated after the cloning of a clonable feature. The generating pattern defines three cases
of generated constraints. For a clonable feature F, if it is bound, the single-binding
will require that exactly one of its clones should be bound, the multi-binding will
require that one or more clones should be bound, and the all-binding will require that
all it clones should be bound. If F is not bound, all the three cases will require that
none of its clones can be bound.

Since there are three kinds of target constraints in the pattern, a related question is
which kind should be selected when applying the pattern. We think that the question
should be answered according to more specific semantics related to each clonable
feature. A special situation is that: when a clonable feature is mandatory, only the all-
binding target constraints are suitable. Otherwise, the mandatory feature may need to
be changed into optional.

192 W. Zhang et al.

3.3 The Adapting Pattern

In a clone-enabled feature models, a problem related to a constraint is that how the
constraint should be adapted in the context that one or more features involved in the
constraint belong to a clonable structure and that the structure is cloned.

Table 6. Definition of the adapting pattern

Pattern Name Adapting

Clonable Feature F

Cloned Features Fi, (i = 1, 2, …, n).

C
on

te
xt

Source Constraint const(A, B, …, C, D, …, E): a constraint among a set of features.

Trigger Condition {A, B, …, C, D, …, E} ∩ cs(F) = {A, B, …, C} ≠ ∅

Target Constraints
const(A, B, …, C, D, …, E) ∧

(),...2,1(ni=∧ (bind(Fi)→ const(Ai, Bi, …, Ci, D, E, …, F)))

For this problem, we introduce the generating pattern (see Table 6). The name
“adapting” means that some existing constraints should be adapted after the cloning
of a clonable feature F. The target constraints defined in the adapting pattern contains
two parts. The first part contains exactly the source constraint, which means the
source constraint is still maintained after the cloning of F (this is an important charac-
teristic of the generating pattern). The second part contains a set of constraints for
each of the clones of F, respectively. For each clone Fi, the constraint requires that if
Fi is bound, then the original constraint should also be satisfied by replacing each
feature X in the constraint that belongs to cs(F) with its clone Xi.

4 BDD-Based Verification of Feature Models

As we can see in Section 3, after a sequence of clone transformations, even simple bi-
nary constraints (i.e. requires and excludes) could be transformed into complex compos-
ite constraints. This further increases the difficulty of feature models’ verification.

In this section, we present a BDD-based approach to verifying feature models.
First, we introduce three verification criteria, which are proposed in our previous
work [13], and have been proven to be effective in detecting deficiencies in feature
models [14]. Base on the three criteria, we proposed a BDD-based algorithm that can
check the three criteria’s satisfiability by only traversing once to the nodes in a BDD
(binary decision diagram). We also provide two strategies to improve the efficiency
of creating a feature model’s BDD. Experiments show that this approach is more
efficient and can verify more complex feature models than our previous method.

4.1 Three Criteria for Feature Models’ Verification

From the viewpoint of feature models’ verification, a feature model can be abstracted
into a set of features and a set of constraints among features [13]. According to a

 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 193

feature’s binding state, features in a feature models can be partitioned into three sets.
The bound set contains exactly all the features having been bound, the removed set
contains exactly all the features having been removed, and the undecided set contains
all the other features which will be bound or removed in later customizing activities.
A customizing decision to an undecided feature either binds the feature or removes it.

Given a feature model, if any of the following three criteria is not satisfied, there
must be errors or deficiencies either in the constraints among features or in the cus-
tomizing decisions to features [13].

Criterion 1: There exists at least a set of customizing decisions to all features in the
undecided set that will not violate any constraints among features.

Criterion 2: Each feature in the undecided set has a chance to be bound, without vio-
lating any constraints among features.

Criterion 3: Each feature in the undecided set has a chance to be removed, without
violating any constraints among features.

Von der Maßen and Lichter [15] have created a deficiency framework for feature
models. Our previous investigation [14] shows that the three criteria can detect most
kinds of anomaly and inconsistency among constraints at an early stage (i.e. before
customization). Further details about the three criteria and the deficiency framework
can be found in [13,14,15].

Although the three criteria are very effective, the checking of them is not easy. Cri-
terion 1 is a binary CSP, and the time complexity of its checking is O(2n), where n is
the number of features in the undecided set. For each undecided feature, Criterion 2
and 3 can also be easily transformed into two binary CSPs with the time complexity
of O(2n), respectively. That is to say, the three criteria’s checking could be trans-
formed into the checking of 2n+1 binary CSPs, and the total time complexity would
be O(2n+2n⋅2n), which equals to O((2n+1)⋅2n).

4.2 BDD-Based Checking Algorithm for the Three Criteria

Although the three criteria’s checking could to be transformed into the checking of
2n+1 CSPs, there is a shortcoming in such an approach, that is, it treats the 2n+1
CSPs as independent problems, without considering the connections between these
problems. In fact, we could find that the 2n+1 CSPs are very similar; the only differ-
ence between them is that a different undecided feature’s binding state is assigned to
bound or removed. If the similarity could be fully explored, the time complexity
would be further decreased.

Based on this observation, we investigate the BDD technique and find an algorithm
that can check the three criteria’s satifiability by only traversing once to the nodes in a
BDD. Before giving more details about the algorithm, we first give a short introduc-
tion to BDDs.

In general, a BDD is a compact data structure for representing a Boolean function
[6]. Fig. 3 shows an example of BDDs. We can see that a BDD is composed of multi-
ple layers, each layer contains a set of nodes related to a propositional variable, and
each node connects to right layers’ nodes through a true branch or a false branch,
which means that the node is assigned the value of true or false, respectively. The

194 W. Zhang et al.

rightmost layer contains two nodes of true and false, which denotes the Boolean func-
tion’s two possible value. A path from the leftmost node to the true node means that
the function’s value is true in the value assignment indicated by the path, and a path
to the false node means the function’s value is false.

a

c

b

b
d

d true

false

a b c d f

The true path of a.

The false path of a.

Fig. 3. The BDD representation of Boolean functions: an example. This show a BDD of the
Boolean function: f = (a ↔ b) ∧ (c ↔ b), where, a, b, c, and d are four propositional variables.
The path “a true, b true, c false, d false, true” means that, in the following value assignment:
a=true, b=true, c=false, and d=false, the function f’s value is true. Similarly, the path “a false,
b true, false” means that f’s value is false in the value assignment indicated by the path.

Now, we explain how to check the three criteria’s satisfiability efficiently, in the
context that the set of constraints among features are transformed into a BDD3. For
Criterion 1, the checking method is simple; if there is a node whose true path or false
path connects to the true node, then this criterion is satisfied. For Criterion 2 and 3,
we use the idea illustrated in Fig. 4 to check their satisfiability.

A
true

false

X A Y

A

A

B
true

false

X B Y

B

B

Fig. 4. The idea to check the satisfiability of Criterion 2 and 3. For a feature A, in order to
check whether it has a chance to be bound, we only need to examine whether all the true paths
of A’s nodes connect to the false node (see the left part). The answer yes means that A has no
chance to be bound, and the answer no means A still has the chance. Following the same idea,
we can check whether a feature has a chance to be removed. The only difference is to examine
whether all the false paths of the feature’s nodes connect to the false node (see the right part).

To realize the idea above into an algorithm, we have to consider the situation that a
BDD contains crossing paths. A crossing path eliminates some nodes from a BDD in
order to maintain the BDD’s compactness. We need to recover those eliminated
nodes, before applying the idea above. Fig. 5 shows an example of this situation.

Based on the general idea and the special situation, we develop the following algo-
rithm to check the satisfiability of Criterion 2 and 3, an algorithm that take a breadth-
first traversal to a BDD’s nodes.

3 See section 4.3 for how to transform a set of constraints among features into to a BDD.

 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 195

A
true

false

X A Y

A
A

A crossing path. A
true

false

X A Y

A
A

A

(a). A BDD contains crossing paths. (b). The redundant representation
of the BDD in (a).

The eliminated node.

Fig. 5. A BDD containing crossing paths and its redundant representation. In (a), although all
the true paths of A’s nodes connect to the false node, A still has a chance to be bound. This is
caused by the crossing path that eliminates a node of A. If recovering the eliminated node, we
can get a redundant representation of the BDD. In the redundant BDD, there is a node of A,
whose true path does not connect to the false node, and thus A still could be bound.

A BDD-based algorithm for Criterion 2 and 3. Where, get_true_branch(Node e)
returns e’s child node through the true path, get_false_branch(Node e) returns e’s
child node through the false path, and isNonCrossedLayer(Layer layer) returns
whether the layer is crossed by any crossing paths. The three functions are created in
a BDD’s construction.

Input: The root of BDD
Output: A set that contains all the features violating Crite-
rion 2 or 3.

Verify(root){
 Set violatedFeatures := ∅;
 for (layer = getLayer(root) to getLayer(0)){
 If (isNonCrossedLayer(layer)=true){
 isCriterion1Violated := true;
 isCriterion2Violated := true;
 for each node e of layer{
 if (get_true_branch(e)!=false_node)
 isCriterion1Violated := false;
 if (get_false_branch(e)!=false_node)
 isCriterion2Violated := false;
 }
 if (isCriterion1Violated = true ||
 isCriterion2Violated = true){
 featureName = getFeatureName(layer)
 violatedFeatures.add(featureName);
 }
 }
 }
 return violatedFeatures;
}

4.3 Constructing a BDD for a Feature Models

Constructing a BDD for a feature model is to transform the conjunction of constraints
in the feature model into a BDD. There are two issues to be considered:

196 W. Zhang et al.

1. How to get a BDD with a smaller size?
2. How to ensure that the constructing process consume less memory space?

We adopt two strategies to deal with the two issues.

Strategy 1: Use the order of the depth-first traversal to feature trees as the variable
order of BDD.

BB YY

(a). Feature Model. (b). Constraint.

AA XX

BB

AA

CC

B requires A
∧

Y requires X

B requires A
∧

C requires A

B
Y

A
X

true

false

B A Y X

(c). The smallest BDD.

B
C

A

true

false

B C A

Case 1:

Case 2:

Fig. 6. The smallest BDDs in two basic cases. In case 1 with two feature trees, a smallest BDD
has a variable order, in that, any child feature precedes its parent or the inverse, and variables
belonging to different feature trees do not mix. In case 2 with a parent feature and its two chil-
dren, a smallest BDD has a variable order, in that, the parent is the last or the first variable. A
depth-first order to feature trees (whether in pre-order or post-order) can satisfy both of the two
cases. The analysis above can also apply to feature models with multiple feature trees, in each
of which, there may be multi-levels of features, and a feature may have three or more children.

This strategy is concluded from two basic cases in feature models (see Fig. 6). In
the two cases, we only consider the feature trees (formed by features and refinement
relations between them) in feature models. As recognized in our previous research
[13], for a refinement between two features, there is a constraint: child requires par-
ent. Based on these constraints, we find that it leads to a smallest BDD by using the
variable order generated from the depth-first traversal to feature trees.

Strategy 2: Construct BDDs for each of the feature trees and for each of the con-
straints in a feature model, then combine these BDDs into the final BDD.

The purpose of this strategy is trying to decrease the possibility that the intermedi-
ate results in BDDs’ construction consume huge memory space. The idea behind this
strategy is to avoid considering too many constraints at one time. For the words limi-
tation, we will not give further details about this strategy.

4.4 Experiments

To examine the approach’s efficiency and capability, we apply it to verify two sets of
designed feature models. One set contains 20 feature models only with binary con-
straints, and the number of features in them varies from 10, 20 to 90, and then from
100, 200, to 1000. The other set contains 20 feature models with both binary and
composite constraints, and the number of features also varies from 10 to 1000. We

 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 197

also use the same two sets of feature models to examine the effect of our previous
SMV-based method for feature models’ verification [13], a method which transforms
feature models’ verification into 2n+1 independent CSPs, and uses the model checker
SMV [10] to verify these CSPs. The environment for our experiments is a notebook
with a 2.0G HZ CPU, 512 MB memory, and a Windows XP OS.

Time
(Second)

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Number of
Features

0.3 0.6 0.9
1.5

1.1

7.2
1.8

66.7

4.3 6.4
9.0

11.0

37.2

+∞

SMV-based method for
complex feature models

SMV-based method for
simple feature models

BDD-based method for
complex feature models

BDD-based method for
simple feature models

10 20 30 40 50 60 70 80 90

+∞

0.04 2.9

53.9

1180

+∞

2906

17.5

4.03.60.20.1

0.05

Fig. 7. The result of experiments

Fig. 7 shows the result of our experiments. We can see that, the SMV-based ap-
proach can not handle feature models with more than 100 features, while for feature
models with 100 features, the BDD-based approach only needs a time less than one
second. Furthermore, the BDD-based approach can verify complex feature models with
500 features using 66.7 seconds, and verify simple feature models with 1000 features
using 37.2 seconds. The experiments show that the BDD-based approach is more effi-
cient and can verify more complex feature models than the SMV-based approach.

5 Related Work

Feature models are first proposed by Kang et al. [7] in the feature-oriented domain
analysis (FODA) method, and then developed by many researchers in the field of
software reuse [8,5,2,9]. In these researchers, Czarnecki et al. introduced feature
models into the generative software reuse [2] and proposed the concepts of clonable
features [4]. Czarnecki et al. also recognized the semantic-losing problem caused by
clonable features [3], but they did not give a systematic method to resolve this prob-
lem. As far as our knowledge, we do not find any researchers who have given solu-
tions to this problem.

Mannion [9] proposed a verifying method of feature models, in which, constraints
among features are formalized using the propositional logic. Based on his research,
we classified constraints in feature models into several types. For each of them, we
gave its formal definition, and a graphic representation of it, which is used for feature
modelers to create constraints in an easy way. We also proposed the three criteria to
verify feature models [13], and have examined their effectiveness according to the
deficiency framework created by Von der Maßen and Lichter [15]. However, for the
checking problem of the three criteria, we transformed it into 2n+1 independent bi-
nary CSPs, without considering the connections between them.

198 W. Zhang et al.

Our research on BDD-based verification is inspired by Czarnecki’s research [3], in
which, Czarnecki used a commercial BDD package to verifying properties of feature
models. However, it seems that Czarnecki only considered simple binary constraints
between features (i.e. requires, and excludes) and those local composite constraints
between a feature and its children. In addition, Czarnecki did not give details about
how to decide the BDD’s variable order for a feature model, and how to use a BDD in
efficient ways.

Batory [1] proposed a LTMS-based approach to detect deficiencies in constraints
or customization. As we have pointed out [14], this algorithm can check most of the
deficiencies that our criteria can check, but in a later stage (i.e. after certain customiz-
ing decisions have been made). In addition, this approach’s time complexity is same
with our approach, namely, O(2n+1). Where, n is the number of features in a feature
model. In this approach, the transformation from constraints to a CNF (conjunctive
normal form) needs a O(2n) time, and the checking of deficiencies also needs a O(2n)
time, since it have to traverse all the disjunction clauses in the CNF. In our approach,
a BDD’s construction needs a O(2n) time, and the traversal of a BDD also needs a
O(2n) time.

In addition, based on our previous work, we develop a graphical notation for con-
straints in clonable-enabled feature models in this paper. We do not notice that there
are other researchers who have proposed such kind of graphical notations.

6 Conclusions

In this paper, we provided a kind of semantics for constraints in clone-enabled feature
models. The semantics resolved two problems related to clone-enabled feature mod-
els. One is the problem of what kind of constraints should be imposed on a clonable
feature and its clones, and the other is the problem of how an existing constraint
should be transformed after some features in the constraint are cloned. To verify fea-
ture models with complex constraints, we proposed a BDD-based approach, which
makes efficient use of the BDD data structures by considering the characteristics of
the three verification criteria for feature models. Experiments showed that the BDD-
based approach proposed in this paper is more efficient and can handle more complex
feature models than our previous approach.

Acknowledgments. This work is supported by the National Grand Fundamental Re-
search 973 Program of China under Grant No. 2005CB321805, the Hi-Tech Research
and Development Program of China under Grant No. 2006AA01Z156 and
2006AA01Z189, and the Natural Science Foundation of China under Grant No.
90612011, 60528006 and 60703065.

References

1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714. Springer, Heidelberg (2005)

2. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000)

 A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints 199

3. Czarnecki, K., Kim, C.H.P.: Cardinality-Based Feature Modeling and Constraints: A Pro-
gress Report. In: OOPSLA 2005 International Workshop on Software Factories (online
proceedings) (2005)

4. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-based Feature Models
and their Specialization. Software Process Improvement and Practice, special issue of best
papers from SPLC 2004 10(1), 7–29 (2005)

5. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB.
In: Proceedings of Fifth International Conference on Software Reuse, pp. 76–85. IEEE
Computer Society, Canada (1998)

6. Hu, A.J.: Techniques for Efficient Formal Verification using Binary Decision Diagram.
PhD thesis, Stanford University (1995)

7. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain
Analysis Feasibility Study. Technical reports, Software Engineering Institute, Carnegie Mel-
lon University (1990)

8. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures. Annals of Software Engineering 5,
143–168 (2004)

9. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002)

10. The SMV System. Carnegie Mellon University,
http://www.cs.cmu.edu/~modelcheck/smv.html

11. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)
12. Yang, B.: Optimizing Model Checking Based on BDD Characterization, PhD thesis, CMU

(1999)
13. Zhang, W., Zhao, H., Mei, H.: A Propositional Logic-Based Method for Verification of

Feature Models. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 115–130. Springer, Heidelberg (2004)

14. Zhang, W., Mei, H., Zhao, H.: Feature-Driven Requirements Dependency Analysis and
High-Level Software Design. Requirements Engineering, vol. 11(3), pp. 205–220.
Springer, London (2006)

15. von der Maßen, T., Lichter, H.: Deficiencies in feature models. In: Workshop on Software
Variability Management for Product Derivation, in Conjunction with the 3rd Software
Product Line Conference (2004)

	A BDD-Based Approach to Verifying Clone-Enabled Feature Models’ Constraints and Customization
	Introduction
	Preliminary
	A Notation for Feature Models
	The Clonable Structure Related to a Clonable Feature

	Semantics for Constraints in Clone-Enabled Feature Models
	A Description Structure for the $\it {Generating}$ and the $\it {Adapting}$ Patterns
	The $\it {Generating}$ Pattern
	The $\it {Adapting}$ Pattern

	BDD-Based Verification of Feature Models
	Three Criteria for Feature Models’ Verification
	BDD-Based Checking Algorithm for the Three Criteria
	Constructing a BDD for a Feature Models
	Experiments

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

