
S.H. Edwards and G. Kulczycki (Eds.): ICSR 2009, LNCS 5791, pp. 65–75, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Optimization Strategy to Feature Models’
Verification by Eliminating Verification-Irrelevant

Features and Constraints

Hua Yan, Wei Zhang, Haiyan Zhao, and Hong Mei

Key Laboratory of High Confidence Software Technology, Ministry of Education of China,
Insititute of Software, School of Electronics Engineering and Computer Science,

 Peking University, Beijing, 100871, China

{yanhua07,zhangw,zhhy}@sei.pku.edu.cn, meih@pku.edu.cn

Abstract. Feature models provide an effective approach to requirements reuse.
One important problem related to feature models is the verification problem,
which is NP-complete in theory. The existing approaches to feature models’
verification mostly focus on how to automate the verification of feature models
using third-party’s tools, while these tools are usually designed to resolve gen-
eral kinds of problems. However, by simply using these third-party’s tools,
large-sized feature models still can hardly be verified within acceptable time.
We argue that, to improve the efficiency of verification, the problem itself
should be at first optimized. In this paper, we propose an optimization strategy
to feature models’ verification, in which, verification-irrelevant features and
constraints are eliminated from feature models and the problem size of verifica-
tion is therefore reduced. We prove the correctness of this strategy, while
experiments show the effectiveness of this strategy.

Keywords: Feature model, Verification, Problem size, Reduction.

1 Introduction

In software reuse, feature models provide an effective approach to modeling and reus-
ing requirements in a specific software domain. The modeling responsibility of a
feature model is achieved by encapsulating requirements into a set of features and
clarifying possible dependencies among features. The reusing responsibility of a fea-
ture model is carried out through customization - that is, selecting a subset of features
from a feature model, while maintaining those constraint dependencies among features.

One important problem related to feature models’ customization is the verification
problem. The verification of a feature model has two purposes. Before customization,
the verification aims to find possible conflicts in constraints among features. After
customization, the verification is intended to find possible conflicts in customizing-
decisions on a feature model. Based on the discovery that constraints among features
can be formalized as propositional formulas [4,7,1], the verification of a feature
model can be formalized correspondingly as a set of propositional satisfiability (SAT)

66 H. Yan et al.

problems, which are NP-complete in general. Because of the NP-complete nature, the
verification of a complex feature model inevitably suffers from the state space explo-
sion problem. For example, for a feature model with 1000 features and many complex
constraints, the state-space of the verification problem is as large as 21000. Therefore, it
is often infeasible to verify complex feature models without adopting any optimiza-
tion strategy.

In the existing research on feature models’ verification, most of them focuses on
how to automate the verification of feature models using third-party’s tools (such as
those SAT-solvers, CSP-solvers, and Model Checkers). However, as far as to our
knowledge, very little work focuses on how to optimize the verification of feature
models based on the characteristics of feature models’ verification (except some of
our previous work [7,8]). Since those third-party’s tools are often designed to resolve
general kinds of problem, it is impossible for them to incorporate any optimization
strategy specific to feature models’ verification.

In this paper, we propose an optimization strategy to feature models’ verification
by eliminating verification-irrelevant features and constraints from feature models,
and prove the correctness of this strategy. This strategy is developed based on the
observation that most feature models contain some features and constraints that are
irrelevant to feature models’ verification (in the sense that these verification-irrelevant
features and constraints can be safely removed without changing the results of feature
models’ verification), while the problem size of a feature model’s verification is ex-
ponential to the number of features and constraints in the feature model. Therefore,
eliminating verification-irrelevant features and constraints from feature models will
reduce the problem size of verification, and alleviate the state space explosion prob-
lem. Experiments have shown that this strategy improves the efficiency of and the
capability to feature models’ verification.

The rest of this paper is organized as follows. Based on some preliminary knowl-
edge introduced in Section 2, Section 3 presents the optimization strategy to feature
models’ verification, and gives its correctness proof. Experiments and analysis are
shown in Section 4. Related works are discussed in Section 5. Finally, Section 6
concludes this paper with a short summary.

2 Preliminary

In this section, we first give a notation for feature models with formal semantics of
constraints among features, and clarify two kinds of constraint in feature models ac-
cording to the source of constraints, and then introduce the criteria for feature models’
verification, which are proposed in our previous research [7].

2.1 A Notation for Feature Models

The symbols in this notation are listed in Table 1 and explained from the viewpoint
of customization. The formal definitions of constraints among features are given in
Table 2 and Table 3.

 An Optimization Strategy to Feature Models’ Verification 67

Table 1. Symbols in the notation for feature models

Symbol Name Explanation

XX

A mandatory feature
named “X”.

A mandatory feature must be selected in a customizing result,
if its parent feature is selected or it hasn’t a parent feature. If
its parent is removed, it must be removed.

YY

An optional feature
named “Y”.

An optional feature can either be selected in or be removed
from a customizing result, if its parent feature is selected or it
hasn’t a parent. If its parent is removed, it must be removed.

A refinement relation
between two features.

A refinement connects two features. The feature connecting to
the non-arrow end is called the parent of the other feature. A
feature can only have one parent feature at most.

A requires constraint
between two features.

A requires constraint connects two features. The feature
connecting to the non-arrow end is called the requirer, and
the other the requiree. This constraint means that if the re-
quirer is selected, the requiree must be selected.

An excludes constraint
between two features.

An excludes constraint connects two features. This constraint
means that the two features should not be both selected in a
same customizing result.

type

A binding predicate
among a set of features
and binding predicates

The left end connects to a composite constraint or to one of
the right ends of a binding predicate. The right ends connect
to a set of features or binding predicates. We define three
types of binding predicate: and (denoted by ∧); or (denoted
by ∨); xor (denoted by 1). See Table 2 for the formal defini-
tion of binding predicates.

type

A composite constraint
between two binding
predicate

We define two types of composite constraint: requires (de-
noted by); excludes (denoted by). See Table 3 for
their formal definitions.

Table 2. The formal definitions of binding predicates. In this table, A and B denotes features,
and p and q denotes binding predicates. For a feature F, bind(F) is a predicate; it is true if F is
selected, false otherwise. In our notation, we only use binding predicates as constituent parts of
the composite constraints, but not as individual constraints.

or(A, …, B, …, p, …, q) and(A, …, B, …, p, …, q) xor(A, …, B, …, p, …, q)

Binding
Predicate

AA BB
type

p

type

q
AA BB

type

p

type

q

AA BB
type

p

type

q

Formal
Definition

bind(A)∨...∨¬bind(B)
∨...∨p∨...∨¬q

bind(A)∧... ∧¬bind(B)
∧...∧p∧...∧¬q

bind(A)⊗... ⊗¬bind(B)
⊗...⊗p⊗...⊗¬q

Table 3. The formal definitions of composite constraints. In this table, p and q denotes binding
predicates. In the situation that p and q only contains one feature, the two types of composite
constraints becomes the requires and the excludes constraints between two features.

requires(p, q) excludes(p, q)
Composite
Constraint typetypetypetypep q

typetypetypetypep q

Formal
Definition

p → q p → ¬q

68 H. Yan et al.

2.2 Implicit Constraints and Explicit Constraints

Constraints in feature models can be classified into two kinds according to their
source. The first kind is the implicit constraints that are imposed by refinements rela-
tions between features. In feature models, each refinement relation implicitly imposes
a requires constraint between the involved two features – that is, the child feature
requires the parent feature. The second kind is the explicit constraints that are explic-
itly added into feature models by model constructors.

Figure 1 shows a feature model example, in which, (a) is the refinement view, con-
sisting of features and refinements between features, and (b) is the constraint view,
consisting of those explicit constraints added by model constructors. Figure 1(c)
shows all the constraints in the form of propositional formulas. The constraints from 1
to 6 are implicit constraints derived from the refinement view, and the constraints
from 7 to 8 are explicit constraints.

B

G

F

E

D

B

G

A

B C D E

F G

(a) Refinement view of
the feature model

(b) Constraint view of
the feature model

(c) Propositional formula view
of the feature model

1. bind(B) bind(A)
2. bind(C) bind(A)
3. bind(D) bind(A)
4. bind(E) bind(A)
5. bind(F) bind(C)
6. bind(G) bind(C)

7. (bind(B) bind(D) bind(E))
(bind(F) bind(G))

8. bind(B) bind(G)

Fig. 1. A feature model example with explicit and implicit constraints

2.3 Three Criteria for Feature Models’ Verification

In our previous research [7], we proposed three criteria for feature models’ verifica-
tion. According to the deficiency framework for feature models [10], the three criteria
can detect all the anomaly and inconsistency deficiencies. Due to space limitation, we
just list the three criteria as follows without further explanations.

1. There exists at least a set of customizing decisions to all undecided features in a
feature model that will not violate any constraints in the feature model.

2. Each undecided feature in a feature model has the chance to be selected without
violating any constraints in the feature model.

3. Each undecided feature in a feature model has the chance to be removed without
violating any constraints in the feature model.

More information about what kinds of deficiencies exist in feature models and how
the three criteria detect these deficiencies can be referred to literature [10] and [7].

3 Eliminating Verification-Irrelevant Features and Constraints

In this section, we present the optimization strategy to feature model’s verification,
and give the correctness proof of this strategy.

 An Optimization Strategy to Feature Models’ Verification 69

3.1 The Optimization Strategy

During feature models’ verification, one kind of errors (called implicit constraint
violations) can be easily detected and fixed at first. This kind of errors occurs when a
child feature is selected while its parent is not. By checking the binding states of two
features in each refinement, implicit constraint violations can be detected. Then, these
violations can be fixed by removing all the offspring features of the removed features
and selecting all the ancestor features of the selected features.

We have observed that certain features and constraints are irrelevant to the verifi-
cation after handling implicit constraint violations. That is, these features and con-
straints can be safely eliminated without changing the verification results. Based on
this observation, we develop an optimization strategy to feature models’ verification.
This strategy is based on the following two concepts.

Definition 1. Verification-irrelevant features.
A feature is verification-irrelevant, iff this feature does not appear in any explicit

constraint, and none of its offspring features appears in any explicit constraint.

Definition 2. Verification-irrelevant constraints.
A constraint is verification-irrelevant, iff at least one feature involved in this con-

straint is verification-irrelevant.

Figure 2 shows the verification-irrelevant features and constraints in a feature model
example. After eliminating these verification-irrelevant features and constraints, this
feature model is reduced to the feature model in Figure 1.

B

G

F

E

D

B

G

A

B C D E

F G

(a) Refinement view of
the feature model

(b) Constraint view of
the feature model

(c) Propositional formula view
of the feature model

1. bind(B) bind(A)
2. bind(C) bind(A)
3. bind(D) bind(A)
4. bind(E) bind(A)
5. bind(F) bind(C)
6. bind(G) bind(C)
7. bind(I1) bind(B)
8. bind(I2) bind(E)
9. bind(I3) bind(E)
10. bind(I4) bind(F)
11. bind(I5) bind(F)
12. bind(I6) bind(F)
13. bind(I7) bind(I2)
14. bind(I8) bind(I2)

15. (bind(B) bind(D) bind(E))
(bind(F) bind(G))

16. bind(B) bind(G)

I2 I3I1

I4 I5 I6 I7 I8

Fig. 2. A feature model example. The verification-irrelevant features and constraints are shown
in the grey area. There are 8 verification-irrelevant features (I1 to I8 in (a)) and 8 verification-
irrelevant constraints (7 to 14 in (c))

Based on the above two definitions, the optimization strategy can be expressed as
follows. Given a feature model without implicit constraint violations, eliminating
those verification-irrelevant features and constraints from this feature model will not
influence the verification result of this feature model.

70 H. Yan et al.

Following this strategy, we can deduce that the feature model in Figure 2 and the
one in Figure 1 are equivalent from the verification point of view if the feature model
in Figure 2 contains no implicit constraint violations.

3.2 The Correctness Proof

We prove the correctness of this strategy by two theorems. In the first theorem, we
show that, after handling implicit constraint violations, if the reduced feature model
satisfies the three verification criteria, the original feature model will also satisfy these
criteria. To prove this theorem, three lemmas are first introduced. In the second theo-
rem, we show that, if the original feature model satisfies the three verification criteria,
the reduced feature model will also satisfy them. Based on the two theorems, the
correctness of this strategy can be naturally deduced.

In the following, we use two pairs <F, C> and <F’, C’> to denote the original fea-
ture model and the reduced feature model, respectively. In the two pairs, F and F’
denote the feature sets of the two feature models, and C and C’ denote the constraint
sets. In addition, we use <F, C−C’> to denote the feature model consisting of the
feature set F and the set of verification-irrelevant constraints C−C’ being removed
from the original feature model. The three verification criteria (see Section 2.3) on a
feature model x are denoted by VerifyC1(x), VerifyC2(x) and VerifyC3(x), respec-
tively. The conjunction of the three criteria is denoted by Verify(x).

Lemma 1. ├ (VerifyC1(<F, C−C’>)∧VerifyC1(<F’, C’>)) → VerifyC1(<F, C>)

Proof: After handling implicit constraint violations, VerifyC1(<F, C−C’>) is true,
then, the assignment of F’ can be expanded to the assignment of F by giving each
undecided eliminated feature a removing customizing decision, which will not cause
any conflict.

Lemma 2. ├ (VerifyC2(<F, C−C’>)∧VerifyC2(<F’, C’>)) → VerifyC2(<F, C>)
Proof: Model reusers can select all the undecided eliminated features without violat-
ing any constraint.

Lemma 3. ├ (VerifyC2(<F, C−C’>)∧VerifyC2(<F’, C’>)) → VerifyC2(<F, C>)
Proof: Model reusers can remove all the undecided eliminated features without vio-
lating any constraint.

Theorem 1. Verify(<F, C−C’>) ├ Verify(<F’, C’>) → Verify(<F, C>)
Proof: We can deduce from Lemma 1, Lemma2 and Lemma 3 that

├ (Verify(<F, C−C’>)∧Verify(<F, C’>))→Verify(<F, C’>))

Thus, ├ (Verify(<F, C−C’>)∧Verify(<F, C’>))→Verify(<F, C’>))

⇒ Verify(<F, C−C’>)∧Verify (<F, C’>) ├ Verify (<F, C>)

⇒ Verify(<F, C−C’>) ├ Verify(<F’, C’>) → Verify(<F, C>)

Theorem 2. ├ Verify(<F, C>)→Verify(<F’, C’>)
Proof: F’⊆F, C’ ⊆C ⇒ ├ Verify(<F, C>) → Verify(<F’, C’>)

Corollary. Verify(<F, C−C’>) ├ Verify(<F’, C’>) ↔ Verify(<F, C>)

 An Optimization Strategy to Feature Models’ Verification 71

4 Experiments

In this section, we first introduce an algorithm of generating random feature models,
and then apply our optimization strategy to the verification of a set of randomly gen-
erated feature models to demonstrate the effectiveness of this strategy.

4.1 An Algorithm of Generating Random Feature Models as Test Cases

To provide test cases for our experiments, we design an algorithm of generating ran-
dom feature models (see Algorithm 1).

Algorithm 1. An algorithm of generating random feature models. In this algorithm, GetRan-
domInt(n) is a function that returns a random integer from 0 to n.

Input:

fN : The number of features of the feature model.
cN : The number of explicit constraints of the feature model.

mNC : The maximum number of features in the constraints.
mW : The maximum number of children of a feature. Its default value

is 10.
p : The percentage of verification-irrelevant features in the

feature model. Its default value is -1, which means that the
percentage of verification-irrelevant features is random.

Output:

The random generated feature model

generate_random_fm(int fN,int cN,int mNC,int mW=10,int p=-1){
FeatureModel fm = new FeatureModel();
Queue queue = new Queue();
Feature f = new Feature();
queue.push(f);
int counter = 1;
while(!queue.isEmpty()){

Feature parent = queue.pop();
for(int i = 0; i < GetRandomInt(mW); i++){

Feature child = new Feature();
parent.addChild(child);
fm.featureSet.add(child);
counter++;
if (p != -1 && counter <= (1-p)*fN){
Constraint constraint = new constraint(child,parent,“requires”);
fm.addExplicitConstraint(constraint);
}
if (counter == fN) break L;

}
}

L:for(int i = 0; i < cN; i++){
Set source = new Set(), target = new Set();
for(int i = 0; i <GetRandomInt(mNC-2)+2; i++){

if(GetRandomInt(1) == 0)
source.add(fm.getFeature(GetRandom((1-p)*fN)));

else// GetRandomInt(1) == 1
target.add(fm.getFeature(GetRandom((1-p)*fN)));

}
String type;// the type of the constraint, see Table 3
if(GetRandomInt(1) == 0) type = “requires”;
else type = “excludes”;
Constraint constraint = new constraint(source, target, type);
fm.explicitConstraints.add(constraint);

}
return fm;

}

72 H. Yan et al.

It should be noticed that in a feature model generated by Algorithm 1, all features
are optional. This is because that, in our experiments, we assume feature models have
been optimized by the atomic-set technique proposed in our previous research [7]. By
applying this technique, mandatory features can be eliminated from feature models.

4.2 Experiments and Analysis

To make the experiments reflect the effectiveness of our strategy for feature models
with different complexity, we generate three groups of feature model by varying the
parameters of Algorithm 1. We use a BDD-based feature models’ verifier [8] to verify
the optimized feature models. The environment for our experiments is a computer
with an Intel Core DUO 2.66GHz CPU, 2GB of memory and a Windows XP OS.

20

10

30

40

50

60

0
10 20 30 40 50 60 70 80

62.7

53.5
48.5

38.1

25.2

19.2
15.0

7.6 6.0

Time
(Second)

Percentage of
verification-irrelevant

features (%)

after eliminating
verification-irrelevant features

and constraints

without eliminating
verification-irrelevant features

and constraints

Fig. 3. Experiment results of the first group of test cases. This group has 9 feature models. All
of them contain 500 features and 50 explicit constraints, and the percentage of verification-
irrelevant features varies from 0% to 80% with an increment of 10%.

20

10

30

40

50

60

0
100
/10

200
/20

300
/30

400
/40

500
/50

0.1 0.3 1.1

7.5

43.9

+∞

Time
(Second)

Number of Features
/Number of Explicit Constraints

without eliminating
verification-irrelevant

features and constraints

600
/60

700
/70

3.8

17.0

56.9

+∞

after eliminating
verification-irrelevant

features and constraints

Fig. 4. Experiment results of the second group of test cases. This group has 7 feature models.
The number of features in each test case varies from 100 to 700 with an increment of 100, the
number of explicit constraints in each test case varies from 10 to 70 with an increment of 10,
and the percentage of verification-irrelevant features is random.

 An Optimization Strategy to Feature Models’ Verification 73

Figure 3 shows the experiment results of the first group, from which we can see
that our strategy improves the efficiency of verification for this group of test cases.
Moreover, our strategy becomes more effective as the percentage of verification-
irrelevant features increases.

Figure 4 shows the experiment results of the second group. We can see that al-
though both of the solid curve and the dashed curve rise as the number of features and
explicit constraints increases, the growth rate of solid curve is lower than that of the
dashed curve, which means that our strategy decreases the time for feature models’
verification. The experiment results also show that, for this group of test case, our
strategy increases the capability to feature models’ verification.

20

10

30

40

50

60

0
100
/20

200
/22

300
/24

400
/26

500
/28

0.1
4.2

6.0

Time
(Second)

600
/30

700
/32

800
/34

900
/36

1000
/38

1100
/40

1200
/42

1300
/44

1400
/46

Number of Features
/Number of Explicit Constraints

1500
/48

1600
/50

1700
/52

1800
/54

1900
/56

0.1 0.3 0.8 1.9 3.2
0.20.1 0.3 1.3 2.2 2.5 3.0 4.7 5.0

15.6

9.7

42.2

8.2

13.9
16.1

23.3

+∞ +∞

after eliminating
verification-irrelevant

features and constraints

whiout eliminating
verification-irrelevant

features and constraints

Fig. 5. Experiment results of the third group of test cases. This group has 19 feature models.
The number of features in each test case varies from 100 to 1900 with an increment of 100. The
number of explicit constraints in each test case varies from 20 to 56 with an incremental change
of 2. The percentage of verification-irrelevant features is random.

Figure 5 shows the experiment results of the third group. We can see that, by ap-
plying our strategy, a feature model that contains 1500 features can be verified within
10 seconds. For this group of test cases, this strategy improves both the capability to
and the efficiency of feature models’ verification.

5 Related Work

The verification problem of feature models has been noticed since the first time fea-
ture models are proposed [3]. Existing research on feature models’ verification can be
classified into three categories: specification and formalization of verification criteria,
formalization of feature models, and automation of verification. In the research on
specification and formalization of verification criteria, der Maßen and Lichter [10]
proposed a deficiency framework of feature models. In our previous work [7], we
proposed three formalized verification criteria. Our investigation [9] shows that the
three criteria can detect all kinds of anomaly and inconsistency deficiency in der
Maßen and Lichter’s deficiency framework. In the research on formalization of
feature models, Mannion [4] proposed a first-order logic based method for the

74 H. Yan et al.

formalization of feature models’ constraints. In [7], we classified constraints in
feature models into several types, and clarified their formal semantics based on pro-
positional logic. In the research on automation of verification, several verification
methods using third-party’s tools are proposed. For example, Batory proposed a
LTMS-based method [1]. In Czarnecki’s research [2], a commercial BDD package is
used. White et al. proposed a CSP-Solver-based approach [6].

However, little existing research has addressed how to optimize feature models’
verification at the problem level. One exception is the atomic-set technique proposed
in our previous work [7]. Segura gave a quantitative analysis to the effectiveness of
the atomic-set technique [5]. The strategy proposed in this paper can be integrated
with the atomic-set technique through sequential composition. That is, a feature
model can be first reduced by the atomic-set technique, and then be further reduced
through the strategy in this paper. Furthermore, these two optimization techniques can
also be seamlessly integrated with the existing approaches to feature models’ verifica-
tion by equipping these approaches with a preprocessing of optimization.

6 Conclusions

In this paper, we proposed an optimization strategy to feature models’ verification,
and proved the correctness of this strategy. This strategy provides a way to eliminate
features and constraints that are irrelevant to feature models’ verification. Experiment
results demonstrate that by applying this strategy, the verification efficiency of feature
models is improved, and the verification capability is enhanced as well.

Acknowledgments. This work is supported by the National Grand Fundamental Re-
search 973 Program of China under Grant No. 2009CB320701, the Science Fund for
Creative Research Groups of China under Grant No. 60821003, the Hi-Tech Research
and Development Program of China under Grant No. 2006AA01Z156, and the
Natural Science Foundation of China under Grant No. 60703065 and 60873059.

References

1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

2. Czarnecki, K., Kim, C.H.P.: Cardinality-Based Feature Modeling and Constraints: A Pro-
gress Report. In: OOPSLA 2005 International Workshop on Software Factories (2005)

3. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis Feasibility Study. Technical reports, Software Engineering Institute, Carne-
gie Mellon University (1990)

4. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002)

5. Segura, S.: Automated Analysis of Feature Models using Atomic Sets. In: Workshop on
Analyses of Software Product Lines, in Conjunction with the 12th Software Product Line
Conference (2008)

6. White, J., Benavides, D., Schmidt, D.C., Trinidad, P., Ruiz-Cortés, A.: Automated diagno-
sis of product-line configuration errors in feature models. In: Proceedings of the 12th
Software Product Line Conference (2008)

 An Optimization Strategy to Feature Models’ Verification 75

7. Zhang, W., Zhao, H., Mei, H.: A Propositional Logic-Based Method for Verification of
Feature Models. In: Proceedings of 6th International Conference on Formal Engineering
Methods, pp. 115–130 (2004)

8. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-Based Approach to Verifying Clone-
Enabled Feature Models’ Constraints and Customization. In: Mei, H. (ed.) ICSR 2008.
LNCS, vol. 5030, pp. 186–199. Springer, Heidelberg (2008)

9. Zhang, W., Mei, H., Zhao, H.: Feature-Driven Requirements Dependency Analysis and
High-Level Software Design. Requirements Engineering Journal 11(3), 205–220 (2006)

10. von der Maßen, T., Lichter, H.: Deficiencies in feature models. In: Workshop on Software
Variability Management for Product Derivation, in Conjunction with the 3rd Software
Product Line Conference (2004)

	An Optimization Strategy to Feature Models’ Verification by Eliminating Verification-Irrelevant Features and Constraints
	Introduction
	Preliminary
	A Notation for Feature Models
	Implicit Constraints and Explicit Constraints
	Three Criteria for Feature Models’ Verification

	Eliminating Verification-Irrelevant Features and Constraints
	The Optimization Strategy
	The Correctness Proof

	Experiments
	An Algorithm of Generating Random Feature Models as Test Cases
	Experiments and Analysis

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

