
AutoFix: An Automated Approach to Memory Leak Fixing
on Value-Flow Slices for C Programs

Hua Yan Yulei Sui Shiping Chen Jingling Xue
University of New South University of New South Data61 University of New South

Wales, Australia Wales, Australia CSIRO, Australia Wales, Australia
huayan@cse.unsw.edu.au y.sui@unsw.edu.au shiping.chen@csiro.au j.xue@unsw.edu.au

ABSTRACT
C is the most widely used programming language for de-
veloping embedded software, operating systems, and device
drivers. Unlike programs written in managed languages like
Java, C programs rely on explicit memory management, and
are therefore prone to memory leaks. Existing (static or dy-
namic) debugging tools only report leaks, but fixing them of-
ten requires considerable manual effort by inspecting a list of
reported true and false alarms. How to develop on-demand
lightweight techniques for automated leak fixing without in-
troducing new memory errors remains challenging.

In this paper, we introduce AutoFix, a fully automated
leak-fixing approach for C programs by combining static and
dynamic program analyses. Given a leaky allocation site re-
ported by a static memory leak detector, AutoFix performs
a graph reachability analysis to identify leaky paths on the
value-flow slices of the program, and then conducts a liveness
analysis to locate the program points for inserting fixes (i.e.,
the missing free calls) on the identified leaky paths. We
have implemented AutoFix in LLVM-3.5.0 and evaluated
it using five SPEC2000 benchmarks and three open-source
applications. Experimental results show that AutoFix can
safely fix all the memory leaks reported by a state-of-the-
art static memory leak detector with small instrumentation
overhead.

CCS Concepts
•Software and its engineering → Memory manage-
ment; Software performance; Software reliability;

Keywords
Memory Leaks; Bug Fixing; Value-Flow Analysis

1. INTRODUCTION
In software testing, the two central tasks facing software
engineers are finding bugs and fixing them. Both tasks
are expensive in dollar terms and time-consuming due to
the ever-increasing scale and complexity of modern software
systems. A large number of existing program analyses and

Copyright is held by the authors. This work is based on an earlier work: SAC’16
Proceedings of the 2016 ACM Symposium on Applied Computing, Copyright
2016 ACM 978-1-4503-3739-7. http://dx.doi.org/10.1145/2851613.2851773.

(a) Fixing an intraprocedural leak

void Bar () {

char* p = malloc (…); //o

fgets(p , …);

if (C2) {

Use (p);

free (p);

}

else {

Use (p);

free (p);

}

}

void Use (char* x) {

printf (“%s”, x);

free (x);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

void Foo () {

char* p = malloc (…); //o

char* q = “on stack”;

fgets(p , …);

free (p);

if (C1) {

char * t = p;

p = q;

q = t;

}

printf (“%s”, q);

free (p);

if (C1)

free (q);

else

free (p);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(b) Fixing an interprocedural leak

Figure 1: Incorrect () and correct (X) fixes.

testing techniques focus on automatic bug detection. How-
ever, finding bugs is only the first step. Once reported, bugs
must still be repaired. Indeed, manually fixing bugs can be a
non-trivial and error-prone process, especially for large-scale
software.

Recently, a few approaches to automatic bug fixing have
been proposed to reduce maintenance costs by producing
candidate patches for program validation and repairing [1,
11, 15, 22, 24, 37]. For example, ClearView [24] enforces
violated invariants to correct buffer overflow and illegal con-
trol flow errors by creating patches for binaries. AutoFix-
E [37] relies on user specifications and generates repairs us-
ing contracts. Pachika [9] infers object behavior models
to propose candidate fixes for bugs like null dereferences.
GenProg [11] uses genetic programming to repair bugs in
legacy code.

Most of the existing automatic approaches for fixing bugs
in C programs are related to spatial memory errors such as
buffer overflows and null pointer dereferences. Such types
of bug can be validated by inserting assertions and repaired

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 38

by adding conditional checks to avoid executing the code
segment that leads to undesired behaviors (e.g., program
crashes) [17, 31, 41].

Memory leaks represent another major category of memory
errors, i.e. temporal memory errors, which are more com-
plicated to fix automatically. Unlike a spatial error that can
be fixed by adding a conditional check to bypass the point
where the spatial error occurs, every leaky path from a leaky
allocation site needs to be tracked by inserting an appropri-
ate fix (i.e., a free call) without introducing new memory
errors.

Figure 1 illustrates how intra- and inter-procedural mem-
ory leaks are fixed correctly and incorrectly. Suppose the
memory allocated in line 2 in Figure 1(a) is never freed.
Adding a fix, free(p), too early in line 5 can cause a use-
after-free error in line 11, whereas adding free(p) in line
12 at the end of program without considering path corre-
lation may introduce an invalid free site for a stack object
(when the if branch is executed). A correct fix is provided in
lines 13 – 16, with the underlying path correlation accounted
for correctly. Let us consider now an inter-procedural leak
shown in Figure 1(b), where the memory allocated in line 2
is leaked partially along the else branch (lines 8 – 11). A
simple-minded fix, free(x), which is inserted in line 16 in
function Use, is incorrect. Without considering correlated
calling contexts, this fix may introduce a double-free in line
6 when the if branch is executed. A correct fix is given in
line 10, ensuring that only the leak along the else branch
is fixed.

Existing (static and dynamic) memory leak detectors for
C programs only report leaks, but fixing them along every
leaky path remains to be done manually by programmers.
Dynamic detectors [4, 21] find memory leaks by instrument-
ing and tracking memory accesses at runtime, incurring high
overhead. By testing a program under some inputs, dynamic
detectors typically compute an under-approximation which
produces no false positives but potentially misses many bugs.
In contrast, static detectors [6, 16, 32, 33, 38], which over-
approximate runtime behaviors of the program without exe-
cuting it, can soundly pinpoint all the leaks in the program,
but at the expense of some false positives.

This paper presents AutoFix, a fully automated approach
to fixing memory leaks in C programs by combining static
and dynamic analyses. Given a list of leaky allocation sites
reported by a static detector, AutoFix automatically fixes
all the reported leaks by inserting appropriate fixes (i.e.,
free calls) along all the leaky paths. There are two main
challenges. First, a detector reports a leaky allocation site
as long as it discovers one leaky path from the site without
necessarily reporting all the leaky paths. AutoFix is de-
signed to fully repair the memory leak for all its leaky paths.
Second, some reported leaks are false positives. AutoFix
must guarantee memory safety by ensuring that the fixes
are correct regardless of whether the reported leak is a true
bug or a false positive. Note that AutoFix certainly cannot
fix any leaks that are missed (i.e., not reported) by a static
detector.

AutoFix applies to a large class of real-world C programs
where memory management is explicitly orchestrated by

Leaky Allocation Sites

Leak Detector

Value-Flow Construction

Locating Functions to Fix

Identifying Leaky Paths

Liveness Analysis

Inserting Fixes

Analysis

Runtime Checking

Memory Reclamation

Instrumented IR

Instrumentation

Sandbox

Annotated IR

Figure 2: The AutoFix framework.

programmers without resorting to garbage collection (GC)
and/or reference counting (RC). Compared to the GC and
RC approaches, our approach is lightweight as only small
instrumentation overhead is incurred. To safely reclaim a
leaked memory object o from an allocation site without
any programmer intervention, all the memory allocation and
deallocation sites reachable from o on the value-flow slices of
the program are instrumented to keep track of the liveness
of o in shadow memory, thereby enforcing correct leak fixing
inside a memory-safe execution sandbox at runtime.

Figure 2 highlights the basic idea behind AutoFix. Given
a leaked object o from an allocation site (reported by any
leak detector), AutoFix builds from the program a sparse
value-flow graph (S1), on which a graph reachability analysis
is first performed to locate the candidate functions for in-
serting appropriate fixes, i.e., free calls (S2). For each can-
didate function f , AutoFix then identifies the leaky paths
in f for o by computing the value-flow guards with respect
to its existing deallocation sites found in the program (S3).
Next, a liveness analysis is applied inside f on the value-flow
slice of the identified leaky paths for o to determine every
program point P where a fix is needed with path correlation
considered (S4). Finally, the fixes are inserted immediately
after the last use sites of o on all its leaky paths (S5). At
runtime, the instrumented fixes performs runtime checking
to verify statically identified leaks, and reclaims only true
leaked memory objects.

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 39

Shadow memory mapping

(a) Program (d) Runtime shadow memory

void Fun () {

----char* q = “on stack”;

----while (C0) {

-------char* p = malloc(…);//o

-------fgets (p, …);

-------if (C1){

-----------Use (p);

-----------free (p);

-------}

-------else {

-----------if (C2) {

---------------char* t = p;

---------------p = q;

---------------q = t;

-----------}

-----------Use (p);

-------}

-------printf(“loop”);

----}

}

void Use (char* p) {

----printf (“%s”, p);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

(b) Constructing value-flows

: Allocation

: Deallocation

{C1} : Free condition
: Operations on

shadow memory

…

…

allocID

Add (allocID, addr)

Insert addr into the hash map

indexed by allocID

Remove (allocID, addr)

Remove addr from the hash

map indexed by allocID

static

allocation

site

dynamic

address

hash map

Fix (allocID)

Reclaim memory addresses in

the hash map indexed by

allocID, and clear the hash

map

16

4

7

8
12

14

22

21

5

Step 1

{C1}

Value-Flow Graph

Fun

Use

…

…

address

Step 3

: Leaky paths

Step 2

: Functions to fix

Step 5

: Fixes

Step 4

: Live basic blocks

(c) Leak fixing

Use (p)

free (p)

Remove

(allocID, p)

p = malloc (…)

Add (allocID, p)

fget (p , …)

if (C1)

Fun

printf(“loop”)

Use (p)

Fix (allocID)

while (C0) return

t = p

p = q

q = t

if (C2)

Control-Flow Graph

q = “on stack”

…

Figure 3: A motivating example.

This paper makes the following contributions:

• We present AutoFix, a fully automated approach to
memory leak fixing for C programs that can reclaim
all the leaked memory objects reported by any leak
detector.

• We propose an approach to safe memory leak fixing
by combining static and dynamic analyses: an inter-
procedural static analysis is first performed to identify
the earliest program points that the missing free calls
can be inserted without introducing any use-after-free
error; and then, a dynamic analysis, which operates on
efficient shadow memory, tracks the potentially leaked
memory objects and performs runtime checking to fix
true leaks without introducing any double-free error.

• We have implemented AutoFix in LLVM-3.5.0 and
evaluated it using five SPEC2000 benchmarks and three
open-source applications. Our experimental results
show that AutoFix can safely fix all the leaks reported
by the state-of-the-art static leak detector, Saber [32,
33], with runtime overhead averaged at under 2%. For
the long-running server application redis evaluated,
AutoFix has successfully reduced its memory usage

by more than 300MB in a three-hour continuous run
after having fixed its leaks.

2. A MOTIVATING EXAMPLE
In order to describe the main idea of our approach, we use
the example in Figure 3 to go through the five key steps
shown in Figure 2. An allocation site in line 4 of fun in
Figure 3(a) is partially leaky along the else branch in line
10 inside a while loop. Given a leaked object o detected
from this allocation site by a static leak detector, AutoFix
first constructs a value-flow graph shown in Figure 3(b) for
o. Based on this graph, AutoFix inserts one fix immedi-
ately after line 16 on the leaky else branch, as shown in
Figure 3(c). The leaky allocation site (in line 4) and the
deallocation site (in line 8) in the non-leaky if branch are
instrumented with dynamic checks to ensure safe fixing at
runtime, as illustrated in Figure 3(d).

Step 1: Constructing Value-Flows. Following [32, 33],
we construct an inter-procedural value-flow graph (VFG) for
every leaky allocation, with the one for the example given
in Figure 3(b). Note that its nodes are numbered by their
corresponding line numbers in Figure 3(a). In a VFG, its
nodes represent the definitions of variables and its edges
capture their def-use relations.

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 40

Step 2: Locating Functions to Fix. Given a leaked ob-
ject o from an allocation site, AutoFix first determines the
functions where the leaks of o should be fixed. A candidate
function f is chosen if f allocates o (directly in itself or in-
directly in its callee functions) such that o is never returned
to any caller of f . Note that the existence of a candidate
function for o is guaranteed since the main function will be
the last resort. In our example, Fun is selected as a candi-
date function since it contains an allocation site of o (line
4) and o is never returned to any callers of Fun based on its
value-flows.

Step 3: Identifying Leaky Paths. AutoFix identifies
the leaky paths for o in Fun by reasoning about value-flow
guards, which are Boolean formulas capturing branch condi-
tions between defs and uses in the control flow graph (CFG).
The free condition C1 under which the free site in line 8 is
reached is computed by performing a guarded reachability
analysis from the malloc source 4 to its free sink 8 . Thus,
the leak condition ¬C1 encodes the leaky paths in the else

branch as highlighted in red in Figure 3(c).

Step 4: Liveness Analysis. An intra-procedural liveness
analysis is performed for Fun to mark the live basic blocks
for o (shown as double-framed boxes in Figure 3(c)) that are
reachable from the allocation site of o on its leaky paths. As
a result, node 16 is identified as the last-use site of o.

Step 5: Inserting Fixes. As shown in Figure 3(c), a

deallocation Fix() is inserted immediately after 16 (i.e., line
16), where the last use of o is found. In addition, the in-
strumentation code (in dotted-line boxes) also includes the
metadata-manipulating functions inserted (after the malloc

source 4 and the free sink 8) to maintain runtime shad-
ows for o to ensure safe fixing for both leaky and non-leaky
paths.

Figure 3(d) shows that the shadow memory simply maps
an allocation site with its unique ID, allocID, to a hash
map that records (start) addresses of the dynamically allo-
cated objects that are not yet freed. Consider Figure 3(c)
again. Every address p that points to an object allocated
at 4 is recorded in the shadow memory by calling function
Add(allocID, p) instrumented immediately after 4 . The
deallocation site 8 , which is reachable from 4 via value-
flows, is instrumented by calling function Remove(allocID,
p) to delete the address p from the shadow hash map since
its pointed-to object has been released along the non-leaky
if branch. On reaching Fix(allocID) during program execu-
tion, all the objects identified by the addresses correspond-
ing to the allocation site allocID in the shadow memory are
freed (as they would be leaked otherwise).

3. AUTOMATED LEAK FIXING
AutoFix is a compile-time transformation for inserting run-
time checks to reclaim leaked memory for C programs, which
keeps track of potential leaked memory addresses via an
efficient shadow metadata structure. In this section, we
first present the five steps of AutoFix’s compile-time trans-
formation (§3.1 – §3.5), and then describe the design of
AutoFix’s metadata structure (§3.6).

1 char a, b, *p = &a, *q = &b;

2 int main() {

3 *p = '>';

4 *q = '<';

5 swap(p,q);

6 char c = *p;

7 char d = *q;

8 }

(a) The swap program

9 void swap(char *x, char *y) {

10 char t1 = *x;

11 char t2 = *y;

12 *x = t2;

13 *y = t1;

14 }

1 char a, b, *p=&a, *q=&b;

2 int main() {

3 *p = '>';

4 *q = '<';

5 swap(p,q);

6 char c = *p;

7 char d = *q;

8 }

9 void swap(char *x, char *y) {

10 char *t1 = *x;

11 char *t2 = *y;

12 *x = t2;

13 *y = t1;

14 }

(b) Memory SSA form with annotations

5

3 *p= '>';

10 t1 =*x;

13 *y= t1 ;

14

7 d=*q;

9

5

5

4 *q= '<';

11 t2 =*y;

12 *x= t2 ;

14

6 c=*p;

9

5

(c) Value-flow graph

indirect value flow of o[o]

direct value flow of o[o]

[a]

[a]

[a]

[t1]

[b]

[b]

[b]

[b]

[b]

[b]

[t2]

[a]

[a]

[a]

Figure 4: Value-flow example.

3.1 Step 1: Constructing a Value-Flow Graph
An inter-procedural sparse value-flow graph (VFG) [12, 29,
32, 33, 34, 35, 42, 43] for a program is a multi-edged directed
graph that captures the def-use chains of both top-level and
address-taken variables. Top-level variables are the variables
whose addresses are not taken. The def-use chains for top-
level variables are readily available once they have been put
in SSA form as is standard. Address-taken variables are ac-
cessed indirectly and inexplicitly at loads and stores. Their
def-use chains are built in several steps following [7, 32, 33].

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 41

Algorithm 1: Liveness Analysis (for leaked object o)

1 Let F be the set of candidate functions for fixing o
2 foreach f ∈ F do
3 Let subCFG be the subgraph of f ’s CFG that

contains only the leaky paths for o in f
4 foreach basic block b in subCFG do
5 isLive(b)← false
6 if b contains an o-reachable variable then
7 isLive(b)← true

8 while isLive has changed do
9 foreach basic block b in subCFG do

10 isLive(b)←
∨

s∈succ(b) isLive(s)

11 // succ(b) is the set of successors of b

First, the points-to information for the program is computed
by using, e.g., Andersen’s analysis. Second, the accesses of
address-taken variables are made explicit by adding annota-
tions. A load p = ∗q is annotated with a function µ(x) for
each variable x that may be pointed to by q to represent a
potential use of x at the load; A store ∗p = q is annotated
with x = χ(x) for each variable x that may be pointed to
by p to represent a potential def and use of x at the store;
A call site cs is also annotated with µ(x)/x = χ(x) for each
variable x that is inter-procedurally referred/modified inside
the callee of cs. A function definition def f(...) is annotated
at the entry/exit with µ(x)/x = χ(x) for each variable x
that is inter-procedurally referred/modified inside f . Third,
all the address-taken variables are converted to SSA form,
with each µ(x) being treated as a use of x and each x = χ(x)
as both a def and use of x. Finally, the value-flows are con-
structed by connecting the def-uses for each converted SSA
variable.

Figure 4 gives an example. The program in Figure 4(a) de-
fines two variables a and b in line 1, whose addresses are
taken by pointers p and q, respectively. By indirectly mem-
ory accesses via pointers p and q, a and b are first initialized
in line 3 and 4 respectively, and are then passed to subrou-
tine swap in line 5. Finally, c gets a’s value (’<’ after the
swap) by dereferencing p in line 6, while d gets b’s value
(’>’ after the swap) by dereferencing q in line 7. To track
indirect value-flows, annotations are added to make indirect
memory accesses explicit, as shown in Figure 4(b), where
the subscripts of a and b are as in standard SSA form. Note
that the subscripts start from zero at each function entry (a0
in line 3 for main and in line 9 for swap, b0 in line 4 for main
and in line 9 for swap). By connecting def-uses based on
the annotations, the value-flow graph in Figure 4(c) is con-
structed, which shows how a and b’s values are exchanged
and then flow to c and d respectively.

3.2 Step 2: Locating Functions to Fix
Definition 1 (Value-flow Reachability). A vari-

able v is o-reachable if there exists a value-flow path from
the allocation site of o to the definition site of v on the VFG
of the program. A callsite p = call(...) is o-reachable if ei-
ther variable p or x in any x = χ(x) function annotated at
the callsite is o-reachable.

Given a leaked object o from an allocation site reported by
a static detector, AutoFix first determines the candidate
functions where the leaks of o will be fixed. A function f is
a candidate function to insert fixes for o if (1) f contains at
least one o-reachable callsite and (2) there is no o-reachable
variable in any caller of f .

In the case of recursion, if there is no data dependence on
the leaked object o between any two function calls in the
recursive cycle, o can be fixed in the recursive functions;
otherwise fixes for o must be put outside the recursive func-
tions to ensure safe fixing. In the case of global variables,
since they are reachable for every function, leaked objects
pointed to by global pointers can only be fixed in main. How-
ever, global variables are generally not considered as leaks
in existing leak detectors [6, 16, 32, 33].

3.3 Step 3: Identifying Leaky Paths
To identify the leaky paths in a candidate function f , AutoFix
performs a forward analysis on the VFG from an o-reachable
callsite src to construct a value-flow slice Ssrc that includes
all the nodes reachable from src but confined in f .

If no free sites are reachable from src, then all paths in
function f are leaky paths. Otherwise, for a free site snk
corresponding to Ssrc, let vfp(src, snk) be the set of all value-
flow paths from src to snk on the VFG, and vfe(P) be the
set of all value-flow edges in a single value-flow path P ∈
vfp(src, snk). Thus, we can obtain the value-flow guards
from src to snk:

V FGuard(src, snk)=
∨

P∈vfp(src,snk)

∧
(ŝ,d̂)∈vfe(P)

CFGuard(ŝ, d̂)

CFGuard(ŝ, d̂) =
∨

Q∈cfp(ŝ,d̂)

∧
e∈Q

boolCond(e)

where CFGuard(ŝ, d̂) is a boolean formula that encodes the

set of control-flow paths, denoted as cfp(ŝ, d̂), from program

point ŝ to d̂ on f ’s CFG. Each branch edge e on a control flow
path Q is uniquely assigned a boolean variable boolCond(e).
In the presence of loops, guards can grow unboundedly. To
avoid unbounded conjunctions that describe all loop itera-
tions, we follow [6, 32, 33] and bound loops to one iteration.
Finally, the leak condition for src is obtained by computing
guards from src to all its reachable free sites in f :

LeakCond =
∨

snk∈Ssrc

V FGuard(src, snk)

Any path from src to the end of function f that satisfies
LeakCond is a leaky path for the leaked object o.

3.4 Step 4: Liveness Analysis
For a candidate function f , a subgraph is extracted from
f ’s CFG by excluding the control flow edges that are not on
any leaky path. Then, a liveness analysis is applied to this

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 42

0x00

0x01

0xFF

0x03

0x02

0x03 0x2aa0501d0x06

0x04

0x05

0x06

0x07

0x07

0x16fa201c 0x03

2
8
s
lo
t
s

64-bit address (only the lower 48 bits are valid)

1

1

1

1

SCPREADDRFEN

128-bit record

64-bit8-bit40-bit1

………

128

8-bit40-bit

0x16fa201c

USL

Linked hash map (HallocID) for a leaky allocation site

0x01

0x03

NEXT

0x06

8-bit

FEN : Flag for entry validity

ADDR : The recorded address USL : UnusedNEXT : Backward internal Chaining

PRE : Forward internal chaining SC : Separate chaining

Lookup

S
to

re
 / C

o
m

p
a

re

0x01

0x07

7-bit

Figure 5: The metadata structure design.

subgraph to determine the basic blocks in f where o may be
live.

As shown in Algorithm 1, a backward data-flow analysis is
performed in f , starting from blocks containing o-reachable
variables (lines 6 – 7) and iteratively marking the liveness
of each block until a fix-point is reached (lines 8 – 11). For
a leaked object o allocated inside a loop, if there is no data
dependence on o between different loop iterations, then fixes
for o can be inserted inside the loop; otherwise fixes for o
must be put outside the loop to ensure safe fixing.

3.5 Step 5: Instrumentation
Based on the liveness information, Algorithm 2 performs
instrumentation to insert fixes for every leaked object o in
each of its candidate functions f . A call to Fix() is inserted
either at the end of b where b is the last live basic block for
o (lines 6 – 7), or at the beginning of n where n is a newly
created basic block between a live block and a non-live block
of o (lines 9 – 11). As shown earlier in Figure 3(d), these
fixes serve to reclaim the dynamically allocated memory at
the allocation site of o that would otherwise be leaked. In
addition, calls to Add() and Remove() are instrumented to
maintain runtime shadow memory, thereby enforcing safe
leak-fixing. A call to Add() is inserted after the allocation
site of o (line 12) to track all its allocated objects in the
shadow memory. A call to Remove() is inserted after each
free site reachable from its corresponding allocation site
(line 13), so that the freed objects are removed from the
shadow memory.

Our instrumentation is safe even if the leaked object o is a
false positive, for two reasons. First, the VFG of a program
over-approximates its def-use chains. Thus, the last-use sites
of o in its candidate functions for fixing o are conservatively
found, ensuring safety by avoiding any use-after-free. Sec-
ond, Add() and Remove() maintain valid memory addresses
in the shadow memory, ensuring safety by avoiding any po-
tential double free along any program path.

Algorithm 2: Instrumentation (for leaked object o)

1 Let F be the set of candidate functions for fixing o
2 Let allocID be the unique ID of o’s allocation site
3 foreach f ∈ F do
4 Let liveBBs be the set of basic blocks that are

marked live for o in f ’s CFG
5 foreach b ∈ liveBBs do
6 if @s ∈ succ(b), isLive(s) = true then
7 Insert Fix(allocID) at the end of b

8 else
9 foreach s ∈ succ(b) s.t. isLive(s)=false

do
10 Insert a new block n between b and s
11 Insert Fix(allocID) at the beginning ofn

12 Insert Add(allocID, p) immediately after the
allocation site p = malloc(...) for o

13 Insert Remove(allocID, q) immediately after each free
site free(q) where q is o-reachable

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 43

3.6 The Metadata Structure
The design philosophy behind our metadata structure is to
enable a judicious tradeoff between time and space, which
aims to support fast lookup, insertion and removal opera-
tions with reasonable space overhead. As shown in Figure 5,
AutoFix maintains a closed hash map HallocID for every
leaky allocation site (with its unique ID, allocID) to keep
track of all the dynamic allocated memory addresses. The
size of HallocID can be user-defined, with larger hash maps
consuming more space and smaller ones potentially impos-
ing higher slowdown due to hash collisions. To achieve a
reasonable tradeoff (as evaluated in §4.3), the default hash
map size is set to 28, with 128 bits for each slot, resulting in
a total of 4 KB consumed for the hash map.

Without loss of generality, our shadow mechanism is sup-
ported on a 64-bit x86 64 architectures with 48-bit virtual
address space and word-aligned pointers. For a 64-bit mem-
ory address allocated at a leaky site, AutoFix uses its lower
8 bits as the index to the corresponding entry in the hash
map, and maps its middle 40 bits to the field ADDR of the
entry. A linked list is implemented to handle hash collisions
in each hash slot, with the field SC recording the head of
the list. Due to the sparsity of the hash map, it is expensive
to retrieve all the valid entries to reclaim leaked memory
by performing a full scan for the map. To speed up the
search, we have used a doubly linked list (similar to Java’s
LinkedHashmap) with the two 8-bit fields, PRE and NEXT,
to record the previous and the next valid entry indexes. The
one-bit field FEN indicates whether an entry is valid or not.
It is set to 0 when the entry is removed from the hash map.
The 7-bit field USL is preserved for future use.

Figure 6 gives the implementation of our shadow metadata
functions i.e. Add(), Remove(), Fix(). The lookup, insert,
remove and clear are standard operations that are simi-
lar to those in Java’s LinkedHashmap and are thus omitted.
Function Add(), which is instrumented immediately after
the leaky allocation site allocID, first finds a slot in HallocID

to create an entry for the allocated memory object o (line
1), then maps bits 8 through 47 of o’s address addro to the
40-bit field ADDR using a simple shift operation (line 2),
and finally inserts the entry into HallocID (line 3). Function
Remove(), which is instrumented after a deallocation site
of o, checks whether the deallocated address is recorded in
HallocID (lines 4 and 5). If so, the corresponding entry is re-
moved (line 6). Function Fix(), which is instrumented after
the last-use site of o, first traverses HallocID using its internal
linked list via getNext (lines 7), then frees all the recorded
addresses (line 8) and clears the hash map (line 9).

4. EVALUATION
We have implemented AutoFix on top of LLVM (version
3.5.0). Eight C programs are used for evaluation as shown
in Table 1, including five SPEC2000 benchmarks and three
popular open-source applications. The SPEC2000 suite is
widely used for evaluating static leak detectors [6, 16, 32, 33].
However, the SPEC2000 benchmarks that have less than
two reported leaks (e.g. parser and gap) are excluded from
our evaluation. The five selected SPEC2000 benchmarks
are ammp (contains many leaks), gcc (large-sized and con-

// o’s allocation site: allocID

addr
o

= malloc(…);

entry = HallocID -> lookup(addr
o
);

entry -> ADDR = (uint64_t)addr
o

>> 8;

HallocID -> insert(entry);

// o’s deallocation site

free(addr
o
);

entry = HallocID -> lookup(addr
o
);

if (entry)

HallocID -> remove(entry);

(a) Add(allocID, addr
o
)

(b) Remove(allocID, addr
o
)

(c) Fix(allocID)

1

2

3

4

5

6

7

8

9

// o’s last-use site

lastUse(addr
o
);

for(entry = HallocID -> getHead(); entry != 0;

entry = HallocID -> getNext(entry))

free(entry -> ADDR << 8| entry - HallocID);

HallocID -> clear();

Figure 6: Implementation of shadow metadata op-
erations.

tains many leaks), perlbmkm (allocation-intensive), twolf

(allocation-intensive) and mesa (deallocation-intensive). We
also include three open-source applications: a2ps-4.14 (a
postscript filter) containing a relative large number of leaks,
and two long-running server programs: h2o-1.2 (an http
server) and redis-2.8 (a NoSQL database).

All our experiments are conducted on a platform consisting
of a 3.0 GHZ Intel Core2 Duo processor with 16 GB memory,
running RedHat Enterprise Linux 5 (kernel version 2.6.18).
The source code of each program is compiled into bit-code
files using clang and then merged together using LLVM Gold
Plugin at link-time (LTO) to produce a whole-program bit-
code file. The compiler option mem2reg is turned on to
promote memory into registers. Andersen’s pointer analy-
sis is used to build the VFG for the program [12]. We use
the leak warnings (leaky allocation sites) reported by the
state-of-the-art leak detector, Saber [32, 33], as input to
AutoFix.

We evaluate AutoFix based on three criteria: (1) efficiency
(number of fixes generated and the analysis time taken to do
so), (2) effectiveness (ability to fix memory leaks and reduce
memory usage at runtime), and (3) performance degradation
(instrumentation overhead at runtime).

4.1 Efficiency of AutoFix
The compile-time results of AutoFix are summarized in

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 44

Table 1: Benchmark characteristics

Program
Size
(KLOC)

#Alloc
Sites

#Free
Sites

#Leaky
Alloc
Sites
Reported

#True
Leaks

ammp 13.4 37 30 20 20
gcc 230.4 161 19 45 40

perlbmk 87.1 148 2 12 8
mesa 61.3 82 76 7 3
twolf 20.5 185 1 5 5
a2ps 41.8 295 161 39 28
h2o 18.2 95 123 27 26
redis 61.8 47 62 24 20
Total 534.5 1050 474 179 150

char* p = "..."; // stack obj

if (...) {

p = malloc(...); // heap obj

…

}

use(p); // conservative last use site of heap obj

(a) Code with a memory leak before applying AutoFix

1

2

3

4

5

6

char* p = "..."; // stack obj

if (...) {

p = malloc(...); // heap obj

Add(…); // instrumented by AutoFix

…

}

use(p); // conservative last use site of heap obj

Fix(…); // instrumented by AutoFix

(b) Code without memory leaks after applying AutoFix

1

2

3

++

4

5

6

++

Figure 7: Fixing path correlated leaks in AutoFix.

Table 2. Given a total of 179 leaky allocations reported
in the eight programs, AutoFix fixes them all by inserting
393 calls to Fix() (Column 2), 179 calls to Add() (Column
3) and 107 calls to Remove() (Column 4). On average, a
leaky allocation results in only 2.2 fixes. This shows that
AutoFix is able to precisely place fixes along the identified
leaky paths with lightweight instrumentation. As shown in
Table 2 (Column 5), it takes 216.1 seconds to analyze the
534.5 KLOC for the eight C programs altogether. In par-
ticular, AutoFix spends 81.7 seconds on gcc, the largest
program (230.4 KLOC) studied. The analysis times for the
other seven programs are all within one minute.

4.2 Effectiveness of AutoFix
To evaluate the effectiveness of AutoFix in fixing leaks at
runtime, we compare the memory usage of each program
before and after automated fixing using Valgrind [21]. For
the five SPEC2000 benchmarks, their reference inputs are

---256--static int _redisContextConnectTcp(...) {

...

---281-----for (p = servinfo; p != NULL; p = p->ai_next) {

...

---291--------rv = getaddrinfo(…, &bservinfo); // o’s allocation site

-- ++ Add (bservinfo, allocID); // instrumented by AutoFix

---297--- ----for (b = bservinfo; b != NULL; b = b->ai_next) {

... // o is used in the loop

---302------- }

-- ++ Fix (allocID); // instrumented by AutoFix

---329----}

---342 -}

Figure 8: The leaky code (in net.c of redis-2.8) fixed
by AutoFix.

15 30 45 60 75 105 120 135 150

Time (minute)

50

100

150

200

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

303

262

229

181

153
136

120
107

89

50

23 26 22 24 25 25 28 25 31 35
16

after AutoFix

before AutoFix

1650 180

250

300

342

35

Figure 9: Memory footprint of redis-2.8 before and
after fixing the leak.

used. For the three open-source applications, their own re-
gression test suites are used. For a total of 67 real leaks
triggered by the inputs (Column 2 in Table 3), AutoFix is
able to reclaim all the leaked memory at runtime, which is
verified by Valgrind [21].

In our experiments, we observed that a substantial num-
ber of leaks are inter-procedural, involving path correlation.
These leaks are ignored and cannot be fixed by the pure
static approach LeakFix [10] due to the over-approximative
nature of static analysis. In contrast, AutoFix combines
static analysis with runtime checking to enable precise fix-
ing for all leaks including those involving path correlations.

Figure 7 shows a memory leak pattern in gcc and the in-
strumented code with the leak fixed. The pointer p at the
callsite use (in line 6) may point to either (1) a heap ob-
ject (allocated in line 3) when the if branch is taken, or
(2) a stack object (allocated in line 1) otherwise. A leak
happens in the former case, while the code is leak-free in
the latter case. AutoFix tracks the memory allocation by
instrumenting an Add after malloc (in line 3) and reclaims
only truly leaked memory by performing runtime checks in
Fix immediately after the last use site (in line 6) conserva-
tively computed by value-flow analysis.

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 45

0

0.5

1

1.5

2

2.5

3

ammp gcc perlbmk mesa twolf a2ps h2o redis

Linked List Hash Map with 64 Slots Hash Map with 256 Slots Hash Map with 65536 Slots

R
u

n
ti

m
e

 O
v
e

rh
e

a
d

(%

)

Figure 10: Comparing runtime overheads for different metadata structures used in AutoFix.

Table 2: Compile-time statistics of AutoFix

Program #Fix() #Add() #Remove()
Analysis
Time(s)

ammp 20 20 0 0.9
gcc 74 45 13 81.7

perlbmk 131 12 28 32.0
mesa 19 7 9 15.1
twolf 7 5 0 3.9
a2ps 51 39 48 17.0
h2o 61 27 2 9.5
redis 30 24 7 56.0
Total 393 179 107 216.1

To further evaluate the effectiveness of AutoFix in fixing
leaks for long-running programs, we reproduce a real leak
which causes memory exhaustion in redis with its corre-
sponding regression tests [20]. As shown in Figure 8, a loop
(line 281) is used to query the IPs of slave servers. If a slave
sever is dead, reconnection attempts are repeatedly made
by calling getaddrinfo (line 291), which allocates memory
chunks that are never freed, resulting in leaks inside the
for loop. As shown in Figure 9, the memory consumption
of the leaked version of redis increases around 31.7 KB
per second, and over 300 MB are leaked after three hours.
AutoFix can fix this leak effectively, enabling redis’s mem-
ory consumption to remain below 35 MB in the fixed version.

4.3 Runtime Overhead
To measure runtime overhead, each program is executed five
times before and after automated fixing respectively, and the
average overhead is reported in Table 3. The experimental
results show that AutoFix only introduces negligible over-
head for all the eight programs, 1.06% on average, with the
maximum 1.82% observed in a2ps. This confirms that our
instrumentation is lightweight, achieved by identifying the
required deallocation fixes on the value-flow slices of leaky
allocations and tracking leaked objects with simple shadow
operations at runtime.

To evaluate the impact of the metadata structure (as de-
scribed in §3.6) on runtime instrumentation overhead, we
choose four different sizes for the hash map used in order to
demonstrate the time and space tradeoffs made: 1 (with the
hash map degenerating into one linked list), 26, 28 and 216.

Table 3: Run-time statistics of AutoFix

Program #Triggered Leaks Overhead (%)
ammp 1 1.36

gcc 13 0.75
perlbmk 12 0.88

mesa 3 0.76
twolf 2 0.89
a2ps 12 1.82
h2o 15 1.58
redis 9 0.66

The results are shown in Figure 10.

For the five benchmarks, ammp, gcc, mesa, twolf and re-

dis, the four configurations yield similar overheads. How-
ever, for the other three benchmarks, perlbmk, a2ps and
h2o, much higher overheads are incurred when their under-
lying hash maps have degenerated into a single linked list.
In this degenerate case, the lookup operations become too
expensive, especially when a large number of memory ob-
jects are present. When the other three hash map sizes are
used, lookup operations can be performed more efficiently.
The hash map with 26 slots is not very space-consuming,
costing 1 KB for each leaky allocation. However, due to its
high collision rates, this hash map still results in high over-
heads for perlbmk, a2ps and h2o. As shown in Figure 10, the
hash maps with 28 slots (4 KB per leaky allocation) and 216

slots (1 MB per leaky allocation) suffer from similar over-
heads. This indicates that 28 slots are already sufficient to
guarantee low collision rates, and more slots cannot provide
any noticeable performance benefit. For more complicated
applications beyond our evaluation, it is still possible that
28 slots are not enough to ensure low hash collision rates. In
this situation, AutoFix allows users to allocate more slots
for the shadow hash map to achieve better performance.

To understand how the runtime overhead are caused and
distributed, we profile each Add, Remove and Fix oper-
ation instrumented. Figure 11 shows the result. For all
the programs evaluated, maintaining shadow memory (Add
and Remove together) incurs more overhead than reclaim-
ing the leaked memory (Fix) by an average of 31.3%. For
the two programs without Remove operation instrumented
(i.e. ammp and twolf), the Add operation alone (63% in ammp

and 58% in twolf) still accounts for more overhead than the

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 46

63%

37%

ammp

45%

11%

44%

gcc

58%

42%

twolf

39%

43%

18%

a2ps

43%

32%

25%

perlbmk

36%

38%

26%

mesa

49%

8%

43%

h2o

41%

16%

43%

redis

Add Remove Fix

Figure 11: Runtime overhead breakdown.

Fix operation (37% in ammp and 42% in twolf). The Re-
move operation causes significant proportion of overhead in
perlbmk (32%), mesa (38%), and a2ps (43%). These three
programs also have relatively high numbers of false memory
leaks, as shown in Table 1. AutoFix has to identify and
tolerate false memory leaks by the Remove operation when
fixing true ones.

5. RELATED WORK
Leak Detection: Memory leak detection has been exten-
sively studied using static [16, 32, 33, 38] or dynamic [13,
21, 27] analysis. Static detectors examine the source code at
compile-time without executing the program. Saturn [38]
detects memory leaks by solving a Boolean satisfiability prob-
lem. Sparrow [16] is based on abstract interpretation, and
uses function summaries. FastCheck [6] and Saber [32, 33]
find memory leaks on the value-flow graph of the program.
Dynamic detectors, which find leaks by executing the pro-
gram, track the memory allocation and deallocation via ei-
ther binary instrumentation as in Valgrind [21] or source
code instrumentation as in AddressSanitizer [27].

Leak Tolerance: Another line of research focuses on toler-
ating leaks at runtime [3, 23, 36]. The basic idea is to delay
out-of-memory crashes at runtime by offloading stale ob-
jects (regarded as likely leaked) to disks and reclaiming their
virtual memory. Upon accessing a mistakenly swapped-out
object, the object will be swapped back into the memory,
thereby guaranteeing safety. Apart from the space overhead,
dynamically detecting stale objects by tracking accesses of
memory objects also results in non-negligible time overhead.
For example, LeakSurvivor [36] incurs an average runtime
overhead of 23.7% even for applications without memory
leaks. AutoFix, which aims at fixing leaks, is orthogonal
to tolerating leaks. Instead of dynamically tracking every
memory access of every object to determine objects’ live-
ness, AutoFix conservatively approximates the liveness for
only leaky objects at compile-time, therefore avoiding high

runtime overhead.

Garbage Collection: Garbage collection (GC) can elimi-
nate most memory leaks. However, in type-unsafe languages
such as C and C++, it is theoretically impossible to imple-
ment sound GC to automatically manage memory. A few
unsound (conservative) solutions for C and C++ [2, 14, 25]
have been shown empirically to be effective with low space
and time overheads, in which memory allocations (e.g. mal-
loc sites) are replaced by special allocators, and memory
deallocations (e.g. free sites) are removed from the pro-
gram, at the expense of the prompt low-cost reclamation
provided by explicit memory management. Compared to
AutoFix’s static fixing on value-flow slices, GC uses run-
time object reachability to over-approximate object liveness.
In addition, garbage collectors for C and C++ typically need
to monitor all static data areas, stacks, registers and heap.
In contrast, AutoFix only monitors potential leaky allo-
cations reported by leak detectors, which makes AutoFix
much more lightweight than GC. AutoFix and conserva-
tive GC can be applied simultaneously, with the former in
charge of the leaked memory objects allocated by malloc

and the latter in charge of the memory allocated by GC’s
special allocators.

Leak Fixing: Memory leaks can be fixed manually or au-
tomatically. LeakPoint [8] is a dynamic taint analysis that
identifies last-use sites of leaked objects by tracking pointers
and presents programmers the identified sites as candidate
locations for leak fixing. LeakChaser [39] relies on user an-
notations to improve the relevance of bug reports, thereby
assisting programmers to diagnose and fix memory leaks.
Object ownership profiling has also been applied to assist-
ing manual leak detection and fixing [26]. LeakFix [10] is a
pure static approach to automatically fixing leaks in C pro-
grams. Because it cannot handle false positives produced
by other state-of-the-art leak detectors, LeakFix relies on
its own dedicated leak detector and can fix only some but
not all reported leaks. In contrast, our approach combines

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 47

static and dynamic analyses, and is able to automatically fix
all the true leaks reported by a detector with small runtime
overhead.

Value-Flow Analysis: Value-flow analysis computes inter-
procedural def-use information for both top-level and address-
taken variables. A prerequisite for value-flow analysis is
the pointer/alias information provided by pointer analysis.
Value-flow analysis, in turn, can assist pointer analysis to
improve precision and scalability [12, 18, 19, 30]. Recently,
value-flow analysis has been applied in memory error detec-
tion [6, 32, 33, 42], program slicing [28], and inter-procedural
SSA analysis [5].

6. DISCUSSION
Like many program analysis and software testing problems,
static memory leak detection and fixing are undecidable in
general. At its core, it is undecidable whether each leaky
path is feasible. Moreover, even if we ignore runtime eval-
uation of branch conditions and assume all static control-
flow paths are feasible, it is still impossible to develop an
approach that can statically fix all memory leaks by only
inserting missing free calls. This is because it requires the
following strict condition to be satisfied for each leaky path
ρ of each leaked object o: there must exist a program point
l on ρ and l must not be on any non-leaky path ρ′. If the
condition is not satisfied, the free call instrumented may
mistakenly free non-leaked memory objects and is therefore
unsafe. However, the condition has been proven to be not
satisfiable for many memory leaks [40]. As a result, pure
static approach (e.g. LeakFix [10]) can fix only some mem-
ory leaks.

The current AutoFix implementation reclaims leaked mem-
ory as early as possible, which minimizes performance degra-
dation caused by memory leaks. However, this is not neces-
sarily the solution with the smallest instrumentation over-
head, because postponing a fix may allow multiple instru-
mentations to be merged, there by reducing runtime over-
head. We leave this as our future work.

7. CONCLUSION
This paper presents AutoFix, a fully automated approach
to memory leak fixing for C programs by combining static
and dynamic analysis. Given a leaky allocation reported
by a leak detector, AutoFix performs a graph reachability
analysis to identify the leaky paths on the value-flow graph
of the program, and then performs a liveness analysis to lo-
cate the program points for instrumenting the required fixes
on the identified leaky paths at compile-time. To guarantee
safe fixing, shadow memory is maintained for the potential
leaked memory objects at runtime. Our evaluation shows
that AutoFix is capable of fixing all reported memory leaks
with small instrumentation overhead.

8. ACKNOWLEDGEMENTS
This work is supported by ARC grants, DP130101970 and
DP150102109.

9. REFERENCES
[1] A. Arcuri and X. Yao. A novel co-evolutionary ap-

proach to automatic software bug fixing. In IEEE
World Congress on Computational Intelligence, pages
162–168, 2008.

[2] H.-J. Boehm. Bounding space usage of conservative
garbage collectors. In POPL ’02, pages 93–100, 2002.

[3] M. D. Bond and K. S. McKinley. Tolerating memory
leaks. In OOPSLA’08, pages 109–126, 2008.

[4] D. Bruening and Q. Zhao. Practical memory checking
with dr. memory. In CGO ’11, pages 213–223, 2011.

[5] S. Calman and J. Zhu. Increasing the scope and res-
olution of interprocedural static single assignment. In
SAS’09, pages 154–170, 2009.

[6] S. Cherem, L. Princehouse, and R. Rugina. Practical
memory leak detection using guarded value-flow analy-
sis. In PLDI ’07, pages 480–491, 2007.

[7] F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich. Ef-
fective representation of aliases and indirect memory
operations in SSA form. In CC ’96, pages 253–267,
1996.

[8] J. Clause and A. Orso. Leakpoint: pinpointing the
causes of memory leaks. In ICSE ’10, pages 515–524,
2010.

[9] V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes
from object behavior anomalies. In ASE ’09, pages 550–
554, 2009.

[10] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou,
B. Xie, and H. Mei. Safe memory-leak fixing for C
programs. In ICSE’15, pages 459–470, 2015.

[11] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software re-
pair. IEEE Trans. on Software Engineering, 38(1):54–
72, 2012.

[12] B. Hardekopf and C. Lin. Flow-sensitive pointer anal-
ysis for millions of lines of code. In CGO ’11, pages
289–298, 2011.

[13] M. Hauswirth and T. M. Chilimbi. Low-overhead mem-
ory leak detection using adaptive statistical profiling. In
ASPLOS ’04, pages 156–164, 2004.

[14] M. Hirzel, A. Diwan, and J. Henkel. On the useful-
ness of type and liveness accuracy for garbage collection
and leak detection. ACM Transactions on Programming
Languages and Systems, 24(6):593–624, 2002.

[15] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu. Au-
tomated concurrency-bug fixing. In OSDI ’12, pages
221–236, 2012.

[16] Y. Jung and K. Yi. Practical memory leak detec-
tor based on parameterized procedural summaries. In
ISMM’08, pages 131–140, 2008.

[17] C. Le Goues, S. Forrest, and W. Weimer. Current chal-
lenges in automatic software repair. Software Quality
Journal, 21(3):421–443, 2013.

[18] L. Li, C. Cifuentes, and N. Keynes. Boosting the per-
formance of flow-sensitive points-to analysis using value
flow. In FSE ’11, pages 343–353.

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 48

[19] L. Li, C. Cifuentes, and N. Keynes. Precise and scalable
context-sensitive pointer analysis via value flow graph.
In ISMM’13, pages 85–96, 2013.

[20] D. Mezzatto. Sentinel 2.8 branch memory leak in redis,
https://github.com/antirez/redis/issues/2012, 2014.

[21] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI ’07, pages 89–100, 2007.

[22] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and
S. Chandra. Semfix: Program repair via semantic anal-
ysis. In ICSE ’13, pages 772–781, 2013.

[23] G. Novark, E. D. Berger, and B. G. Zorn. Plug: auto-
matically tolerating memory leaks in C and C++ appli-
cations. Technical Report UM-CS-2008-009, University
of Massachusetts, 2008.

[24] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, et al. Automatically patch-
ing errors in deployed software. In SOSP ’09, pages
87–102, 2009.

[25] J. Rafkind, A. Wick, J. Regehr, and M. Flatt. Precise
garbage collection for c. In ISMM ’09, pages 39–48,
2009.

[26] D. Rayside and L. Mendel. Object ownership profiling:
a technique for finding and fixing memory leaks. In
ASE’07, pages 194–203, 2007.

[27] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. AddressSanitizer: A fast address san-
ity checker. In USENIX Annual Technical Conference,
pages 309–318, 2012.

[28] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing.
In PLDI ’07, pages 112–122, 2007.

[29] Y. Sui, P. Di, and J. Xue. Sparse flow-sensitive pointer
analysis for multithreaded C programs. In CGO’16.

[30] Y. Sui and J. Xue. On-demand strong update analysis
via value-flow refinement. In FSE’16, pages 460–473,
2016.

[31] Y. Sui, D. Ye, Y. Su, and J. Xue. Eliminating redun-
dant bounds checks in dynamic buffer overflow detec-

tion using weakest preconditions. IEEE Transactions
on Reliability, 65(4):1682–1699, 2016.

[32] Y. Sui, D. Ye, and J. Xue. Static memory leak detec-
tion using full-sparse value-flow analysis. In ISSTA ’12,
pages 254–264, 2012.

[33] Y. Sui, D. Ye, and J. Xue. Detecting memory leaks stat-
ically with full-sparse value-flow analysis. IEEE Trans-
actions on Software Engineering, 40(2):107–122, 2014.

[34] Y. Sui, S. Ye, J. Xue, and P. Yew. SPAS: Scalable path-
sensitive pointer analysis on full-sparse SSA. In APLAS
’11, pages 155–171.

[35] Y. Sui, S. Ye, J. Xue, and J. Zhang. Making context-
sensitive inclusion-based pointer analysis practical for
compilers using parameterised summarisation. Soft-
ware: Practice and Experience, 44(12):1485–1510, 2014.

[36] Y. Tang, Q. Gao, and F. Qin. Leaksurvivor: towards
safely tolerating memory leaks for garbage-collected
languages. In USENIX Annual Technical Conference,
pages 307–320, 2008.

[37] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,
B. Meyer, and A. Zeller. Automated fixing of programs
with contracts. In ISSTA ’10, pages 61–72, 2010.

[38] Y. Xie and A. Aiken. Context- and path-sensitive mem-
ory leak detection. In FSE’05, pages 116–125, 2005.

[39] G. Xu, M. D. Bond, F. Qin, and A. Rountev.
Leakchaser: helping programmers narrow down causes
of memory leaks. In PLDI ’11, pages 270–282, 2011.

[40] H. Yan, Y. Sui, S. Chen, and J. Xue. Automated mem-
ory leak fixing on value-flow slices for C programs. In
SAC’16, pages 1386–1393, 2016.

[41] D. Ye, Y. Su, Y. Sui, and J. Xue. Wpbound: Enforcing
spatial memory safety efficiently at runtime with weak-
est preconditions. In ISSRE’14, pages 88–99, 2014.

[42] D. Ye, Y. Sui, and J. Xue. Accelerating dynamic detec-
tion of uses of undefined variables with static value-flow
analysis. In CGO ’14, pages 154–164.

[43] S. Ye, Y. Sui, and J. Xue. Region-based selective flow-
sensitive pointer analysis. In SAS ’14, pages 319–336.
Springer, 2014.

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 49

ABOUT THE AUTHORS:

Hua Yan is a PhD candidate in the School of Computer Science and Engineering at
the University of New South Wales, Australia, supervised Prof. Jingling Xue. He
also works part-time at CSIRO, Australia, co-supervised by Dr. Shiping Chen.
Before that, he was a software engineer in a commercial bank for 3.5 years. Hua Yan
received his B.S. and M.S. in computer science from Peking University, China, in
2007 and 2010, respectively. His research interests are software engineering,
software testing, software reuse, and program analysis.

Yulei Sui received the Bachelor’s and Master’s degrees in computer science from
Northwestern Polytechnical University, Xi’an, China, in 2008 and 2011, and the
Ph.D. degree in computer science from the University of New South Wales, Sydney,
Australia. He has been a Postdoctoral Fellow in Programming Languages and
Compilers Group, University of New South Wales, since 2014. He is broadly
interested in the research field of software engineering and programming languages,
particularly interested in static and dynamic program analysis for software bug
detection and compiler optimizations. He worked as a Research Intern in Program
Analysis Group for Memory Safe C project in Oracle Lab Australia in 2013. Dr. Sui
was an Australian IPRS scholarship holder, a keynote speaker at EuroLLVM, and a
Best Paper Award winner at CGO'13.

Shiping Chen is a principal research scientist at CSIRO Australia. He also holds an
adjunct associate professor title with the University of Sydney through teaching and
supervising PhD/Master students. He has been working on distributed systems for
over 20 years with focus on performance and security. He has published over 100
research papers in these research areas. He is actively involved in computing
research community through publications, journal editorships and conference PC
services, including WWW, EDOC, ICSOC and IEEE ICWS/SCC/CLOUD. His
current research interests include secure data storage & sharing and secure multi-
party collaboration. He is a senior member of the IEEE.

Jingling Xue received the BSc and MSc degrees in computer science and
engineering from Tsinghua University in 1984 and 1987, respectively, and the PhD
degree in computer science and engineering from Edinburgh University in 1992. He
is currently a professor in the School of Computer Science and Engineering, UNSW
Australia, where he heads the Programming Languages and Compilers Group. His
main research interest has been programming languages and compilers for about 25
years. He is currently supervising a group of postdocs and PhD students on a number
of topics including programming and compiler techniques for multi-core processors
and embedded systems, concurrent programming models, and program analysis for
detecting bugs and security vulnerabilities. He has served in various capacities on
the Program Committees of many conferences in his field. He is the senior member
of the IEEE.

APPLIED COMPUTING REVIEW DEC. 2016, VOL. 16, NO. 4 50

	ACR 16-4 (FRONTMATTER)
	ACR 16-4 (papers)
	Karel Cemus
	Introduction
	Related Work
	Software Development Models
	Business Rules Modeling
	Business Rules Extraction

	Aspect-driven Design Approach
	Business Documentation
	Business Documentation with ADDA
	Documentation Derivation Process
	Views on Business Documentation

	Case study
	Properties of Case Study

	Conclusion
	References

	Karel Cemus_BIO
	ABOUT THE AUTHORS:

	Chin-Fu Kuo
	Chin-Fu Kuo_BIO
	ABOUT THE AUTHORS:

	Tobias Pape
	Introduction
	Background
	Structures in Racket
	Structures and Objects

	Structure Usage in Racket
	Static Analysis
	Results

	Dynamic Analysis
	Results

	Discussion of Analysis Results

	Optimizing Records
	Direct Mapping Approach
	General Optimizations
	Flat Structure
	Inlining
	Unboxing and mutability separation with cells

	Immutable Boolean Field Elision

	Structures in Pycket
	RPython and Pycket
	Meta-tracing
	Pycket

	Optimization Steps
	Flat Structure
	Inlining
	Typed Cells for Mutability Separation

	Eliding Immutable Boolean Fields
	A Note on Unboxing
	Implementation Summary

	Evaluation
	Micro-benchmarks
	Basic Operations
	Binary Tree
	Parser

	Optimization Impact and Results
	Direct Mapping Approach
	General Optimizations
	Immutable Boolean Field Elision

	Limitations

	Related Work
	Conclusion and Future Work
	Appendix: Comprehensive Benchmark Results
	References

	Tobias Pape_BIO
	ABOUT THE AUTHORS:

	Hua Yan
	Hua Yan_BIO
	ABOUT THE AUTHORS:

