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ABSTRACT

Typestate analysis relies on pointer analysis for detecting temporal
memory safety errors, such as use-after-free (UAF). For large pro-
grams, scalable pointer analysis is usually imprecise in analyzing
their hard “corner cases”, such as infeasible paths, recursion cycles,
loops, arrays, and linked lists. Due to a sound over-approximation
of the points-to information, a large number of spurious aliases
will be reported conservatively, causing the corresponding type-
state analysis to report a large number of false alarms. Thus, the
usefulness of typestate analysis for heap-intensive clients, like UAF
detection, becomes rather limited, in practice.

We introduce Tac, a static UAF detector that bridges the gap
between typestate and pointer analyses by machine learning. Tac
learns the correlations between program features and UAF-related
aliases by using a Support Vector Machine (SVM) and applies this
knowledge to further disambiguate the UAF-related aliases reported
imprecisely by the pointer analysis so that only the ones validated
by its SVM classifier are further investigated by the typestate anal-
ysis. Despite its unsoundness, Tac represents a practical typestate
analysis approach for UAF detection. We have implemented Tac
in LLVM-3.8.0 and evaluated it using a set of eight open-source
C/C++ programs. The results show that Tac is effective (in terms of
finding 5 known CVE vulnerabilities, 1 known bug, and 8 new bugs
with a low false alarm rate) and scalable (in terms of analyzing a
large codebase with 2,098 KLOC in just over 4 hours).
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Figure 1: A finite state automation (FSA) for UAF.
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1 INTRODUCTION

Use-after-free (UAF) vulnerabilities, i.e., dangling pointer derefer-
ences (accessing objects that have already been freed) in C/C++ pro-
grams can cause data corruption [14, 70], information leaks [32, 53],
denial-of-service attacks (via program crashes) [11], and control-
flow hijacking attacks [9, 19, 20]. While other memory corruption
bugs, such as buffer overflows, have become harder to exploit due to
various mitigation techniques [14, 61, 78], UAF has recently become
a significantly more important target for exploitation [32, 77].

Recent years have witnessed an increasingly large body of re-
search on detecting or mitigating UAF vulnerabilities. Most ex-
isting approaches rely on dynamic analysis techniques by main-
taining shadow memory [42, 52, 69] and performing runtime
checks [9, 32, 77]. Dynamic analysis yields no or few false posi-
tives, but can incur non-negligible runtime and memory overheads,
hindering their adoption in production environments. In addition,
dynamic analysis often suffers from binary incompatibility issues
due to code instrumentation used [61]. When used as bug detectors,
dynamic approaches are often limited by test inputs used and can
thus provide low code coverage and miss true bugs.

Static analysis, which approximates the program behavior at
compile-time, does not suffer from the above limitations, but re-
quires scalable yet precise pointer analysis in order to find memory
errors with low false alarm rates in large programs [32]. Typestate
analysis [21, 57] represents a fundamental approach for detecting
statically temporal memory safety errors in C/C++ programs. For
example, UAF bugs can be detected based on the finite state au-
tomaton (FSA) depicted in Figure 1. The typestates of an object o
are tracked by statically analyzing all the statements (e.g., malloc
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sites, free sites, and pointer dereferences at loads/stores) that affect
the state transitions along all the possible program paths. A UAF
warning for the object o is reported when error is reached. This
happens when a free site f ree(p) reaches a use site use(q) (which
denotes a memory access on the same object pointed by q, e.g., ∗q)
along a control-flow path, where ∗p and ∗q are aliases, i.e., p and q
point to o. In what follows, such aliases are said to be UAF-related.
Double-free bugs are handled as a special case of UAF bugs.

ESP [17], as a representative path-sensitive typestate analysis
that runs in polynomial time and space, is useful for checking prop-
erties such as “file open-close” [17] and “socket-connection” [21].
Unlike a data-flow-based path-sensitive analysis that computes ex-
ecution states as its data-flow facts by finding a meet-over-all-path
(MOP) solution, ESP avoids examining possibly infinite program
paths by being partially path-sensitive [17, 68]. ESP uses a symbolic
state as a data-flow fact, which includes an execution state and a
property state of an FSA, based on the points-to information. At a
control-flow joint point, ESP produces a single symbolic state, by
merging the execution states whose corresponding property states
are identical, thus yielding a maximal-fixed-point (MFP) solution.

Below we first discuss the challenges faced in developing a prac-
tical typestate analysis for detecting UAF bugs. We then outline the
motivation behind our machine-learning-based solution.

Challenges and Insights. Unlike temporal properties such as “file
open-close” and “socket-connection”, UAF is much harder to handle
by ESP-based typestate analysis both scalably and precisely, due to
complex aliasing in the presence of a large number of free-use pairs
in real-world programs. For example, php-5.6.8 has 340 million
free-use pairs with 1,391 frees and 244,917 uses.

To achieve soundness, any change to the typestate of an object
must be reflected in all pointers that point to the object, i.e., all
aliases of the object. In addition, the typestate transitions of an
object o must be tracked efficiently and precisely from its free site
f ree(p) to all the corresponding use sites use(q), where ∗p and ∗q
are aliases (with o), along possibly many program paths spanning
across possibly many functions in the program.

A typestate analysis becomes more effective if a more precise
pointer analysis is used. Ideally, one may wish to combine both
typestates and points-to information into the same analysis domain
to form a single data-flow-based path-sensitive analysis, which
will be, unfortunately, intractable due to potentially an unbounded
number of paths and undecidability of aliasing [28, 48]. In order to
simplify complexity, several dimensions of pointer analysis are con-
sidered to enable precision and efficiency trade-offs: flow-sensitive
(by distinguishing the flow of control), field-sensitive (by distinguish-
ing different components of an aggregate data structure), context-
sensitive (by distinguishing calling contexts of a function), and/or
path-sensitive (by distinguishing program paths).

In practice, these over-approximation solutions are usually im-
precise, despite recent advances on sparse [23, 76, 79] and demand-
driven pointer analysis [54, 56, 58], in analyzing a number of hard
“corner cases” in a program, such as infeasible paths (by ignoring
path sensitivity or handling it partially), recursion cycles (by merg-
ing all functions in a recursion cycle), loops (by not distinguishing
different iterations of a loop), arrays (by not distinguishing array
elements), and linked lists (by abstracting some of their nodes as

a single one). As a result, a large number of spurious aliases will
be reported, causing the corresponding typestate analysis to report
a large number of spurious state transitions, i.e., false alarms. For
debugging purposes, therefore, the practical usefulness of typestate
analysis for UAF detection becomes limited.

Our Solution. To address the above challenges, we introduce a
new UAF detection framework, Tac, to bridge the gap between
typestate and pointer analyses by machine learning. Our key obser-
vation is that the spurious aliases reported by pointer analysis are
alike and predictable. They share some common program features
explicitly (e.g., in terms of their declaration types) or implicitly (in
terms of their points-to relations). By training Tac using a Two-
Class Support Vector Machine (TC-SVM), existing UAF ground
truths, i.e., codebases containing labeled known false alarms and
true bugs can be leveraged to enable Tac to learn the correlations
between program features and the UAF-related aliases. Then its
SVM classifier can be called upon to further scrutinize the UAF-
related aliases reported imprecisely by the pointer analysis so that
only the ones validated by the SVM classifier are further investi-
gated by the typestate analysis. Despite its unsoundness, Tac turns
out to be a practical tool for detecting UAF bugs efficiently with a
low false alarm rate for large C/C++ programs.

We evaluate the effectiveness of Tac against Tac-NML (Tac
without machine learning) in both its training and analysis phases.
In the training phase, we exercise Tac using a large number of
UAF samples, including manually identified false alarms reported
by Tac-NML and true bugs (both real and injected) in a set of
four C/C++ training programs. By using the standard 5-fold cross
validation, Tac achieves high precision (92.6%) and recall (95.8%)
while Tac-NML is imprecise (42.1%) despite a total recall (100%),
measured in terms of their ability in finding the true bugs in the
training samples provided.

In its analysis phase, Tac finds 109 true UAF bugs out of 266
warnings reported in a set of eight C/C++ programs including the
four used in the training phase. Among the 109 bugs, there are 14
distinct ones (two UAF pairs are considered to be duplicated if they
share the same free site and dereference the same pointer at the
two use sites), including 5 CVE vulnerabilities, 1 known bug and 8
previously unknown ones. Compared to 19,083 warnings reported
by Tac-NML, Tac reports only 266 warnings, achieving a reduction
rate of 98.6%, reducing significantly the amount of manual effort
needed for inspecting a vast number of false alarms.

Contributions. This paper makes the following contributions:

• We present Tac, a new machine-learning-guided typestate
analysis for detecting UAF bugs statically.
• We introduce an SVM classifier specialized for UAF detection
with a set of 35 features that can effectively disambiguate the
UAF-related aliases reported imprecisely by pointer analysis
to help typestate analysis in finding true UAF bugs at a
significantly reduced false alarm rate.
• We have implemented Tac in LLVM-3.8.0 and evaluated it
using eight open-source C/C++ programs (2,098 KLOC). Tac
finds 109 bugs out of 266 warnings by suppressing 19,083
warnings reported by Tac-NML. Among the 109 true bugs,
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Figure 2: Tac framework.

there are 14 distinct ones, including 5 CVE vulnerabilities, 1
known bug, and 8 previously unknown bugs.

2 OVERVIEW

As shown in Figure 2, Tac has two main components. The training
phase extracts the program features from ground truths and then
uses these features to train an SVM classifier to learn harmful
(benign) UAF-related aliases that cause true bugs (false alarms). A
UAF pair ⟨f ree(p),use(q)⟩ is said to be harmful (benign) if ∗p and
∗q are regarded as aliases (non-aliases) by the SVM classifier.

The analysis phase filters outs many spurious UAF-related aliases
reported by the pointer analysis. A pre-analysis is first performed
to identify a set of candidate UAF pairs ⟨f ree(p),use(q)⟩, where
∗p and ∗q are found to be aliased. For every object o created at an
allocation site, such that o is related to at least one candidate pair
⟨f ree(p),use(q)⟩, where ∗p and ∗q are aliased with o, a forward slice
of the program starting from the allocation site but restricted only to
the statements into which o flows (referred to as the slice of o below)
is found. Then an on-demand typestate analysis is performed on the
slice of o. Based on the features of ⟨f ree(p),use(q)⟩ extracted on the
fly from this slice, the SVM classifier passes ⟨f ree(p),use(q)⟩, when
it is harmful, to the typestate analysis for further investigation.

2.1 The Training Phase

Ground Truths. We exercise Tac using both false and true UAF
samples in a set of real-world C/C++ programs as training programs.
All such UAF samples are annotated for feature extraction.

Feature Extraction. We use a feature vector consisting of 35 fea-
tures to describe a UAF sample. We categorize these features into
the following four categories: (1) type information (e.g., global,
array and struct), (2) control-flow (e.g., loop, recursion, and the
distance between a free site and a use site), (3) common program-
ming practices (e.g., pointer casting and reference counting), and
(4) points-to information (e.g., the number of objects that may be
used at a use site and the number of UAF pairs sharing the same
free site).

Prediction Model. Our prediction model for UAF detection uses
an SVM classifier. Conceptually, the SVM model used is a harm-
fulness predicate, which separates the input space containing all
the UAF samples into two regions, marked as harmful and benign,

respectively. To tune the intrinsic SVM parameters for optimal ac-
curacy, standard grid search is applied with 5-fold cross validation
by enumerating all possible combinations of the SVM parameters.
Given a set of SVM parameters, 5-fold cross validation computes
the accuracy of the SVM model in three steps. First, all the UAF
samples are divided into 5 equal-sized subsets. Then, each subset, in
turn, is used as a test set with the remaining 4 subsets combined as
its training set. Finally, the averaged accuracy rate obtained is the
expected accuracy of a model under the set of SVM parameters [10].

2.2 The Analysis Phase

Pre-analysis. We start conservatively with a set of candidate ob-
jects that may be unsafe (as they may induce UAF bugs). An object
o (identified by its allocation site) is selected as a candidate to be
further investigated by our typestate analysis if a free site f ree(p)
can reach a use siteuse(q) via context-sensitive control-flow reacha-
bility in the program, where p and q point to o, i.e., o ∈ pt(p)∩pt(q).
Here, pt(v) denotes the points-to set of a variable v . In this case, ∗p
and ∗q are aliased (with o). For efficiency reasons, the pre-analysis
is performed in terms of Andersen’s pointer analysis [5] as im-
plemented in [59]. As is standard, context-sensitive control-flow
reachability is solved as a balanced-parentheses problem by match-
ing calls and returns to filter out unrealizable program paths on the
interprocedural CFG (Control Flow Graph) of the program [50].

Slicing. For each candidate object o, the program is sliced to keep
only the relevant functions that o may flow to (i.e., o’s liveness
scope) by using a standard mod-ref analysis, with its value-flow
dependences computed by a flow-insensitive pointer analysis [23,
60]. Our typestate analysis for o will be performed on this slice.

Typestate Analysis. Our typestate analysis starts from a candi-
date object o created at its allocation site, with its path-sensitivity
focused on the typestates of the FSA depicted in Figure 1. Follow-
ing ESP [17], a data-flow fact is a symbolic state consisting of a
property state, i.e., live, dead or error, and an execution state,
which represents the values of all the variables affecting the control
flow. At a two-way joint point, one symbolic state is obtained, by
merging the execution states whose corresponding property states
are the same. On encountering a free site f ree(p), the FSA transits
from live to dead if o ∈ pt(p). On encountering subsequently a
use/free site use(q)/f ree(q), the FSA transits from dead to error

44



1: void foo() {
2: void* p = malloc(1);//o1
3: void* q = p;
4: int flag = 0;
5: if (Cond) {
6: free(p);
7: p = malloc(2);//o2
8: flag = 1;
9: }
10: if (flag == 0)
11: use(q); // False UAF w.r.t. line 6
12: use(q); // True UAF w.r.t line 6
13: use(p); // False UAF w.r.t line 6
14: }

// Data structure for linked-lists
1: typedef struct NODE {
2: int data;
3: struct NODE* nxt;
4: } NODE;

// The 1st, 2nd, 3rd and ith nodes
5: NODE *n1, *n2, *n3, *ni;

6: unsigned sz = sizeof(NODE);

7: void bar() {
8: ni = n1 = (NODE*)malloc(sz);//o1
9: for (int i = 0; i < 10; ++i) {
10: ni->nxt = (NODE*)malloc(sz);//o2
11: ni = ni->nxt;
12: ni->nxt = NULL;
13: }
14: n2 = n1->nxt;
15: n3 = n2->nxt;
16: free(n2);
17: use(n1); // False UAF w.r.t line 16
18: use(n2); // True UAF w.r.t line 16
19: use(n3); // False UAF w.r.t line 16
20: }

(a) Path-sensitivity (b) Linked-list

Figure 3: Examples illustrating how imprecise pointer analysis leads to imprecise typestate analysis for UAF detection.

if both o ∈ pt(q) and the aliasing relation between ∗p and ∗q (with
respect to o) reported by the pointer analysis is also validated by our
SVM classifier. In this case, a UAF/double-free warning is issued.

Given a UAF pair, ⟨f ree(p),use(q)⟩, pt(p) and pt(q) are computed
by using a demand-driven flow-sensitive pointer analysis [58]. If
∗p and ∗q are found to be aliased (with o), we pass the pair to an
SVM classifier for a further sanity check based on the features of
⟨f ree(p),use(q)⟩ extracted on the fly from the sliced program of o.

2.3 Examples

Figure 3 gives two examples to illustrate how the imprecision in
pointer analysis leads to the imprecision in typestate analysis.

Typestate Analysis with Path-Insensitive Pointer Analysis.
ESP-based typestate analysis is path-sensitive in tracking non-
pointer scalar values but interprets pointer values conservatively
as ⊥, i.e., obtainable from a pointer analysis. Figure 3(a) gives an
example with one true UAF bug (at line 12) and two false UAF bugs
(at lines 11 and 13) with respect to the free site at line 6, by using
the points-to information computed by a path-insensitive pointer
analysis.

We focus on analyzing the object o1 allocated at line 2 and freed
conditionally at line 6, at which point, the property state of o1
becomes dead. By using a flow-sensitive pointer analysis without
path sensitivity, ESP can (1) prove that use(q) at line 11 is not a UAF
bug, (2) identify use(q) at line 12 as a true UAF bug, but (3) report
imprecisely use(p) at line 13 as a false alarm.

Table 1 gives the symbolic states (including o1’s property states
for the FSA shown in Figure 1 and execution states) and the points-
to sets at some relevant program points. After analyzing line 9, type-
state analysis combines the symbolic states from the two branches
into one, resulting in sl ine9 = s1 ∪ s2, where s1 = [dead, p = q =
⊥, flag = 1,Cond] (if-branch) and s2 = [live, p = q = ⊥, flag =
0,¬Cond] (else-branch). However, after line 10, s1 is filtered out
due to path contradiction, since f laд = 1 in s1’s execution state is
inconsistent with the branch condition f laд == 0 at line 10. As a
transition from dead to error is impossible, the typestate analysis
correctly proves the absence of a UAF bug for use(q) at line 11.

Table 1: ESP-based Typestate analysis with path-insensitive

pointer analysis for the program given in Figure 3(a).

symbolic
typestates

line 4: [live, p = q = ⊥, flag = 0]
line 6: [dead, p = q = ⊥, flag = 0,Cond]
line 8: [dead, p = q = ⊥, flag = 1,Cond]
line 9: [dead, p = q = ⊥, flag = 1,Cond] ∪

[live, p = q = ⊥, flag = 0,¬Cond]
line 10: [live, p = q = ⊥, flag = 0,¬Cond]
line 11: [dead, p = q = ⊥, flag = 1,Cond] ∪

[live, p = q = ⊥, flag = 0,¬Cond]
points-to
sets

line 6: pt(p) = {o1}
lines 11 and 12: pt(q) = {o1}
line 13: pt(p) = {o1,o2}

At line 12, the pointer analysis finds precisely that p and q point
to o1 allocated at line 2. Therefore, a state transition from dead to
error occurs in s1, so that a true UAF bug for use(q) at line 12 is
reported. However, at line 13, due to the lack of path-sensitivity, p
is found to point to both o1 (allocated at line 2) and o2 (allocated
at line 7), resulting in a spurious alias relation between ∗p and ∗q.
Therefore, f ree(p) at line 6 and use(q) at line 13 are considered to
access o1, triggering a spurious state transition from dead to error
in s1. Thus, a false alarm is raised for use(p) at line 13.

Typestate Analysis with Imprecise Handling of Lists. Fig-
ure 3(b) gives a linked-list example to demonstrate that field-
sensitivity is not powerful enough to enable pointer analysis to
distinguish the internal structure of an aggregate object.

With field-sensitivity, we can distinguish the head node (repre-
sented by o1) from the remaining 10 nodes (abstracted by o2) in
the linked-list, created at the two allocation sites at lines 8 and 10,
respectively. Thus, the typestate analysis can correctly prove the
absence of a UAF bug for use(n1) at line 17 and report use(n2) at
line 18 as a true UAF bug. However, the pointer analysis cannot
distinguish the accesses to the second and third elements of the
linked-list, since pt(n2) = pt(n3) = {o2}, resulting in a spurious
alias relation between ∗n2 and ∗n3. Therefore, a false alarm for
use(n3) at line 19 is reported.
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2.4 Discussion

There are many spurious aliases introduced by pointer analysis.
We propose to apply machine learning to significantly reduce their
presence in order to improve the precision of typestate analysis.

3 TAC APPROACH

We introduce Tac, including its training phase (Section 3.1) and
machine-learning-guided typestate analysis phase (Section 3.2).

3.1 Training

The aim of our SVM classifier is to further disambiguate the UAF-
related aliases imprecisely reported by pointer analysis.

Building an SVM Classifier. We use x ∈X to denote a UAF sam-
ple representing a pair of free and use sites ⟨f ree(p),use(q)⟩x ∈X .
A feature Fi is either a syntactic or semantic property of a program,
mapping x to either a boolean or numeric value Fi : X → N. Fol-
lowing the standard normalization [10] to achieve accuracy in the
training process, we adjust the values of the samples inX in order to
map a feature to a real number between 0 and 1 inclusive, by using
function Fi : X → [0, 1]n . Specifically, given a sample x ∈ X , this
is done as Fi (x)= (Fi (x)−min(Fi (X )))/(max(Fi (X ))−min(Fi (X ))),
where min (max) returns the minimum (maximum) value for Fi
among all the samples in X . Finally, a feature vector of length n
is defined as F = (F1, . . . ,Fn ) containing a set of n features to
capture the properties of every sample.

During the training process, we build an SVM classifier C :
[0, 1]n → {0, 1} that takes a feature vector F of a sample
⟨f ree(p),use(q)⟩x as input and returns whether ∗p and ∗q are
aliases (1) or not (0). The typestate analysis phase will make use of
the classifier to reduce the number of UAF-related spurious aliases.
For a program, letXall be the set of all UAF pairs ⟨f ree(p),use(q)⟩x
causing the FSA in Figure 1 to transit into error, where ∗p and
∗q are found to be aliased by a pointer analysis used. Only the
following subset XML will be further investigated by the typestate
analysis:

XML={⟨f ree(p),use(q)⟩x ∈ Xall | C (F (x))=1 ∧ pt(p)∩pt(q) , ∅}

In other words, the UAF pairs ⟨f ree(p),use(q)⟩x in Xall \ XML
are ignored, since ∗p and ∗q are not aliases by the SVM classifier.

Extracting Program Features. Table 2 gives a set of 35 features,
which are divided into four categories below, to represent a UAF
sample. Note that this set of features can be extended by considering
other program characteristics or reused by other program analyses.
• Type Information (Features 1 – 9). Type information is used
to identify arrays (F1), structs (F2), C++ containers (F3), different
kinds of use sites (F4, F5 and F6), global variable accesses for free
and use sites (F7 and F8), and type compatibility for the pointers
p and q at a free site f ree(p) and a use site use(q) (F9).
• Control Flow (Features 10 – 17). We consider the following
control-flow properties, including whether a pair of free and use
sites resides in the same loop or recursion cycle (F10 and F11),
the distance between a free site and a use site in the program’s
call graph (F12), control-flow reachability from a free site to a use
site via a loop back-edge (F13), control-flow dominance and post-
dominance between a free site and a use site (F14 and F15), the

number of indirect calls along the shortest path from a free site
to a use site in the program’s call graph (F16), and control-flow
reachability from a use site to a free site for a UAF pair (F17).
• Common Programming Practices (Features 18 – 25). We
consider a number of programming practices for memory man-
agement, including setting p to null immediately after f ree(p)
(F18), returning an integer or a boolean value from a wrapper
for f ree(p) to signify the success or failure for f ree(p) (F19 and
F20), pointer casting (F21), setting p to point to a newly allocated
object after f ree(p) (F22), reference counting for an object (F23),
and null checking before a pointer is freed (F24) or used (F25).
• Points-to Information (Features 26 – 35). We take advantage
of the points-to information computed by the pointer analysis
used, including the sizes of the points-to sets at free and use sites
(F26 and F27), the number of UAF pairs sharing the same free (F28)
or use (F29) site, and the number of aliased pointers pointing to a
candidate UAF object (F30). In addition, we also consider whether
a candidate object is allocated in loops (F31), recursion cycles
(F32) or as a node of a linked-list (F33) participating in a points-
to cycle (causing the object to abstract many concrete nodes
in the list). Finally, we consider whether p and q at a UAF pair,
⟨f ree(p),use(q)⟩, are the same variable (F34) and whether q at
use(q) is defined just before the free site (F35).
Let us revisit the two examples in Figure 3. In Figure 3(a),

F9, F14, F15, F22, F26, F27, F34 and F35 for line 13 are useful to pre-
dict that the UAF pair at lines 6 and 13 is not a bug. In Figure 3(b),
F31, F33 and F35 for line 19 can help avoid a false alarm that would
otherwise be raised for the UAF pair at lines 16 and 19.

Support Vector Machine (SVM). Given a set of labeled samples
represented by their feature vectors, an SVM [15] can separate them
by computing an underlying mathematical function, called a kernel
function. There are four commonly used kernels: linear, polynomial,
radial basis function (RBF) and sigmoid kernels. Following [26, 36,
65], a RBF kernel is used. The kernel function maps each feature
vector to a high dimensional space, where the SVM computes a
hyperplane that best separates the labeled samples into two sides.
Once trained, an SVM classifier can be used to classify a given UAF
pair according to simply which side of the hyperplane it falls in.

3.2 Typestate Analysis

We describe our ESP-based typestate analysis for UAF detection.
The basic idea is to achieve improved precision (compared to the
prior work) by applying an SMV classifier to further validate the
UAF-related aliases found imprecisely by the pointer analysis.

Our typestate analysis is a whole-program analysis. We describe
how it works, first intraprocedurally and then interprocedurally.

3.2.1 Intraprocedural Analysis. Intraprocedurally, our typestate
analysis is performed on the CFG of a function,CFG= (N ,E), where
N is a set of nodes representing program statements and E ⊆ N ×N
is a set of edges corresponding to the flow of control between nodes.
For a given edge e , src(e)/dst(e) denotes its source/destination node.

Following ESP [17], we assume three types of nodes on a CFG,
i.e., N = JointNode ∪ BranchNode ∪ StmtNode: (1) a joint node
(i.e., ϕ-node) n ∈ JointNode has two incoming edges InEdдe0(n)
and InEdдe1(n), and a single outgoing edge; (2) a branch node
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Table 2: 35 Features used by the SVM classifier for a UAF sample ⟨f ree(p),use(q)⟩, where o ∈ pt(p) ∩ pt(q).

Group ID Feature Type Description

Type Information

1 Array Boolean o is an array or an element of an array
2 Struct Boolean o is a struct or an element of a struct
3 Container Boolean o is a container (e.g., vector or map) or an element of a container
4 IsLoad Boolean use(q) is a load instruction
5 IsStore Boolean use(q) is a store instruction
6 IsExtCall Boolean use(q) is an external call
7 GlobalFree Boolean free(p), where p is a global pointer
8 GlobalUse Boolean use(q), where q is a global pointer
9 CompatibleType Boolean p and q are type-compatible at free(p) and use(q)

Control Flow

10 InSameLoop Boolean free(p) and use(q) are in the same loop
11 InSameRecursion Boolean free(p) and use(q) are in the same recursion cycle
12 #FunctionInBetween Integer number of functions in the shortest path from free(p) to use(q) in the program’s call graph
13 DiffIteration Boolean use(q) appears after free(p) via a loop back-edge
14 Dom Boolean free(p) dominates use(q)
15 PostDom Boolean use(q) post-dominates free(p)
16 #IndCalls Integer number of indirect calls in the shortest path from free(p) to use(q) in the program’s call graph
17 UseBeforeFree Boolean a UAF pair, free(p) and use(q), is also a use-before-free

Common
Programming
Practices

18 NullifyAfterFree Boolean p is set to null immediately after free(p)
19 ReturnConstInt Boolean a const integer is returned after free(p)
20 ReturnBoolean Boolean a Boolean value is returned after free(p)
21 Casting Boolean pointer casting is applied to q at use(q)
22 ReAllocAfterFree Boolean p is redefined to point to a newly allocated object immediately after free(p)
23 RefCounting Boolean o is an reference-counted object
24 ValidatedFreePtr Boolean null checking for p before free(p)
25 ValidatedUsePtr Boolean null checking for q before use(q)

Points-to
Information

26 SizeOfPointsToSetAtFree Integer number of objects pointed to by p at free(p)
27 SizeOfPointsToSetAtUse Integer number of objects pointed to by q at use(q)
28 #UAFSharingSameFree Integer number of UAF pairs sharing the same free(p)
29 #UAFSharingSameUse Integer number of UAF pairs sharing the same use(q)
30 #Aliases Integer number of pointers pointing to o
31 AllocInLoop Boolean o is allocated in a loop
32 AllocInRecursion Boolean o is allocated in recursion
33 LinkedList Boolean o is in a points-to cycle (signifying its presence in a linked-list)
34 SamePointer Boolean p and q at free(p) and use(q) are the same pointer variable
35 DefinedBeforeFree Boolean q at use(q) is defined before free(p)

Table 3: Program statements in the LLVM-like SSA form.

p,q, i ∈ T (Top-level Vars), a,o ∈A (Address-taken Objs), c, f ld ∈ C (Consts)

uop ∈ {++,−−, !} unary operators
bop ∈ {+,−,×, /,&&, | |,==,,, <, >, ≤, ≥} binary operators

E ::= p,q | c | E1 bop E2 | uop E scalar expressions

use(p) ::= ∗p=q | q=∗p | p[i]=q | q=p[i] memory access
| p→ f ld=q | q=p→ f ld

StmtNode ::= p = E scalar statement
| p=&a | p=malloco | use(p) | f ree(p) memory statements

nE ∈BranchNodewith a branch condition expression E has a single
incoming edge InEdдe0(n) and two outgoing edges,OutEdдe1(n) if
E evaluates to true andOutEdдe0(n) otherwise; and (3) a statement
noden ∈StmtNode has a single incoming edge and a single outgoing
edge.

Program Representation. Table 3 gives all the statements put on
an LLVM-like SSA form for a function [23, 30, 34, 58].

The set of variables is separated into two subsets: T containing
all top-level variables, including pointers and non-pointer scalars,
andA containing all possible targets, i.e., address-taken objects of a
pointer. C is a set of all constants.We useuse(p) to denote a memory
access via a pointer p, including a pointer dereference ∗p, a field
access p→ f ld , and an array access p[i]. Complex statements like
∗p=∗q are simplified to t =∗q and ∗p=t by introducing a top-level
pointer t . Accessing a multi-dimensional array as in q =p[i][j] is
transformed into q=p[k], where k=i ∗ n + j and n represents the
size of the second dimension of the array. We consider UAF only
for the objects o in the heap allocated via p =malloco (but not for
the objects a on the stack allocated via p = &a).

Given aCFG= (N ,E), our typestate analysis computes and main-
tains the data-flow facts inDF (e) for every edge e ∈ E, whereDF (e)
maps e to a set of symbolic statesS with each element s= ⟨ρ,σ ⟩ con-
sisting of a property state ρ ∈ Properties = {live, dead, error}
and an execution state σ . The notation σ (E) is used to evaluate
the expression E in σ . As is standard, σ [v←v ′] denotes the state
obtained by updating the value of v in σ with v ′ and leaving the
values of all other variables in σ unchanged.
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Fjnt (n, S1, S2) = α(S1 ∪ S2)
Fbr (n, S, E) = α({⟨ρ,σ ′⟩ | σ ′=σ∪{E} ∧ Feasible(σ ′) ∧ ⟨ρ,σ ⟩ ∈S})
Fstmt (n, S,o) = α({TF (n, ⟨ρ,σ ⟩,o) | ⟨ρ,σ ⟩ ∈S})

(a) Flow functions for three types of CFG nodes

α(S) = {⟨d,
⊔
⟨ρ,σ ⟩∈S [d ] σ ⟩ | d ∈ Properties ∧ S[d] , ∅}

where S[d] = {⟨ρ,σ ⟩ ∈ S | d = ρ}

(b) Grouping function for merging symbolic states

Statement n if pt(p) = {o′}

and o′ ∈Sinдleton
otherwise

q = ∗p σ [q ← σ (o′)] σ [q ← ⊥]
q = p→f ld σ [q ← σ (o′. f ld)] σ [q ← ⊥]
q = p[i] σ [q ← σ (o′[σ (i)])] σ [q ← ⊥]
∗p = q σ [o′←σ (q)] σ [∀o′∈ pt(p) : o′←⊥]
p→f ld = q σ [o′. f ld←σ (q)] σ [∀o′∈ pt(p) : o′. f ld ← ⊥]
p[i] = q σ [o′[σ (i)]←σ (q)] σ [∀o′∈ pt(p) : o′[σ (i)] ← ⊥]
p = &a

σ [p ← ⊥]
p =malloco

(d) Γ(σ ,n) : Updating execution states for memory statements

TF
(
n, ⟨live, σ ⟩, o

)
=


⟨live, σ [q←σ (E)]⟩
⟨dead,σ ⟩
⟨live, Γ(σ ,n)⟩

if n is q = E
else if n is free(p) ∧ o ∈ pt(p)
otherwise

TF
(
n, ⟨dead, σ ⟩, o

)
=


⟨dead, σ [q←σ (E)]⟩
⟨error, Γ(σ ,n)⟩
⟨error, σ ⟩
⟨dead, Γ(σ ,n)⟩

if n is q = E
else if n is use(q) ∧ o ∈ pt(q) ∧ predict(n)
else if n is free(q) ∧ o ∈ pt(q) ∧ predict(n)
otherwise

where predict(n) =

{
True if ∃m ∈ Fo : ⟨m,n⟩ ∈ XML
False otherwise

(c) Transfer function for program statement (with Fo defined in Figure 5)

Figure 4: The data-flow functions for Tac’s machine-learning-guided intraprocedural typestate analysis.

1: procedure Solve (nmalloco ,CFG = (N ,E))
2: foreach e ∈ E DF (e) B ∅
3: DF (OutEdдe(nmalloco )) B {[live,⊤]}
4: Worklist B {dst(OutEdдe(nmalloco ))}

5: while(Worklist , ∅)
6: Remove a node n fromWorklist
7: switch (n)

8: case: n ∈ JointNode
9: S := Fjnt (n,DF (InEdдe0(n)),DF (InEdдe1(n)))
10: Add (OutEdдe0(n), S)
11: case: nE ∈ BranchNode
12: ST := Fbr (n,DF (InEdдe0(n)), E)
13: SF := Fbr (n,DF (InEdдe0(n)),¬E)
14: Add (OutEdдe1(n), ST )
15: Add (OutEdдe0(n), SF )
16: case: n ∈ StmtNode
17: S := Fstmt (n,DF (InEdдe0(n)))
18: Add (OutEdдe0(n), S)
19: if(n is f ree(p)) Fo := Fo ∪ { f ree(p)}
20: end procedure

21: procedure Add (e, S)
22: if(DF (e) , S)
23: DF (e) B S
24: Worklist BWorklist ∪ {dst (e)}
25: end procedure

Figure 5: Tac’s intraprocedural typestate analysis.

Machine-Learning-Guided Typestate Analysis. Figure 5 gives
a standard worklist algorithm for the typestate analysis that com-
putes and updates the data-flow facts on the CFG of a function for
a given UAF candidate object o (determined by pre-analysis) until a
fixed point. Unlike ESP [17], which starts its path-sensitive analysis
from the entry of a CFG, our analysis starts from the allocation
statement nmalloco (line 3) of o to trade precision for efficiency.

Our analysis handles three types of CFG nodes, JointNode (lines
8 – 10), BranchNode (lines 11 – 15) and StmtNode (lines 16 – 19)
using the flow functions given in Figure 4(a), mapping an input state
to an output state for every node. At line 19, we record the current
free sites for object o in Fo found during the control-flow traversal
so that we can pair them with uses of o in order to validate their
associated aliases using our SVM classifier. Figure 4(b) gives the
typestate grouping function α(S) that reorganizes a set of symbolic
states S by merging the execution states of two symbolic states s1
and s2 ∈ S if s1 and s2 have the same property state.

For a joint node, the flow function Fjnt unions the data-flow
facts on its incoming edges. For a branch node, Fbr updates its
input execution state σ with σ ′ = σ ∪{E} if Feasible(σ ′) holds, i.e.,
the branch predicate E is not ruled out due to path contradiction,
decided by a satisfiability solver, which is Z3 [18] in our evaluation.
For a statement node, Fstmt maps its input state to a new output
state by using the transfer function TF defined in Figure 4(c). Note
that a free statement is handled at line 19 as a special case.

TF (n, ⟨live,σ ⟩,o) and TF (n, ⟨dead,σ ⟩,o) handle the state tran-
sitions of o when the current property states are live and dead,
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1:int main() {
2: int* p = malloc(1);//o
3: int flg = userInput();
4: int* r = &flg;
5: int i = 1, j = 0;
6: if (flg < 0) {
7: free(p);
8: *r = i;
9: }

10: else {
11: *p = i;
12: *r = j;
13: }

. . . //q is defined here
14: if (flg == 1)
15: *q = i;
16:}

Line Symbolic State
2: [live, p=⊥]

4: [live, r=p=flg=⊥]

5: [live, r=p=flg=⊥, i=1, j=0]
6: [live, r=p=⊥, flg<0, i=1, j=0]
7: [dead, r=p=⊥, flg<0, i=1, j=0]
8: [dead, r=p=⊥, flg=1, i=1, j=0]
11: [live, r=p=⊥, flg≥ 0, i=1, j=0]
12: [live, r=p=⊥, flg=0, i=1, j=0]
13: [dead, r=p=⊥, flg=1, i=1, j=0] ∪

[live, r=p=⊥, flg=0, i=1, j=0]
14: [dead, r=p=⊥, flg=1, i=1, j=0]

Figure 6: An example for illustrating Tac.

respectively. The former is handled in the usual way. So let us focus
on the latter. Tac reports a UAF bug if TF (n, ⟨dead,σ ⟩,o) signifies
a state transition of o from dead to error (Figure 1), when n is a
use(q) or a f ree(q). Thus, there are two cases. If n is a use(q), then
a UAF warning is issued when both (1) o ∈ pt(q), implying that ∗p
in a free site f ree(p) seen earlier and ∗q are found to be aliased
with o by the pointer analysis [58], and (2) predict(n) returns true,
implying that this alias is also validated by our SMV classifier. If n
is a f ree(q), then a double-free warning is issued, instead.

Finally, Figure 4(d) gives the rules for performing strong up-
dates on address-taken objects in order to improve the precision
of Feasible(σ ′) in Figure 4(a) for top-level variables. We can distin-
guish two cases when tracking the execution states of statements.
For a scalar statement p ← E, σ simply evolves into σ [p ← σ (E)].
However, updating σ for a memory-related statement is more com-
plex, as shown in Figure 4(d). Strong updates are performed when
p points to exactly one (runtime) singleton object o′ in Sinдleton,
which contains all objects in A except for the locals in recursion
cycles and all the heap objects [34, 58]. Otherwise, the variables
on the left-hand side of an assignment are updated to be ⊥ con-
servatively. Note that dynamically (statically) allocated arrays are
treated as heap objects (locals or globals). For an array access p[i],
o′[σ (i)] represents any element in o′ if i is statically unknown.

3.2.2 Interprocedural Analysis. Given a whole program, our
typestate analysis proceeds context-sensitively on its interproce-
dural CFG [29] with indirect calls resolved by Andersen’s pointer
analysis [5]. Every function has a unique entry node and a unique
exit node, with each callsite being split into a call node and a re-
turn node. Context-sensitivity is achieved by solving a balanced-
parentheses problem [50] with an additional abstract call stack (a
sequence of callsites) maintained in every symbolic state to filter out
unrealizable inter-procedural paths by matching calls and returns.
Following ESP [17], we apply a mod-ref analysis to avoid analyzing
a function invoked at a callsite if it may not access the candidate
UAF object being analyzed by using value-flow slicing [17, 60]. Un-
like ESP [17], which starts its from the entry of the program, our
analysis starts from an allocation statement, as discussed above.

3.2.3 Example. We use an example in Figure 6 to illustrate how
Tac correctly reports the true UAF bug (at lines 7 and 15). At line 2,
a memory object o is allocated and pointed by p. In the if-branch
(lines 6 – 9), o is freed, indicated with f lд set as 1. In the else-branch

 Table 4: Open-source benchmarks.

Program Version Language LOC #Frees #Uses
rtorrent 0.96 C++ 13,036 118 3,039
less 451 C 27,134 86 7,902
bitlbee 4.2 C 68,413 201 5,897
nghttp2 1.6.0 C++ 71,387 29 7,566
mupdf 1.2.337 C++ 122,481 253 105,911
h2o 1.7.2 C++ 517,731 896 150,887
xserver 1.14.3 C 568,964 1,675 90,841
php 5.6.7 C 709,356 1,391 244,917
Total — — 2,098,502 4,649 616,960

(lines 10 – 13), o is updated, indicated with f lд set as 0. Lines 14
– 15 are the buggy code that mistakenly check f lд == 1 instead
of f lд == 0 before dereferencing p, causing a UAF bug. Figure 6
gives the symbolic states obtained by Tac at some program points.

Tac starts from o’s allocation site at line 2, where the property
state of o is initialized as live and the symbolic state of p is set
as ⊥. At line 3 (not shown), f lд is assumed to be initialized to ⊥
(returned by userInput()). Let us see how the if-branch (lines 6
– 9) is analyzed. When analyzing line 6, Tac records its branch
condition f lд < 0 in the resulting symbolic state. At line 7, o is
freed, causing the property state of o to transit from live to dead.
At line 8, Tac makes a strong update to get f lд = 1, since r points
to f lд, where f lд ∈ Sinдleton.

Let us now move to the else-branch (lines 10 – 13). When ana-
lyzing line 10, Tac records f lд ≥ 0 in the resulting symbolic state.
At line 11, the property state of o remains unchanged according to
Γ. At line 12, Tac makes a strong update to get f lд = 0.

At line 13, Fbr is applied to merge the two symbolic states from
the two branches. The if branch at lines 14-15 filters out the states
that do not satisfy f lд == 1. Thus, [dead, r= p=⊥, flg= 1, i=
1, j=0] is kept but [live, r = p = ⊥, flg=0, i=1, j=0]] dropped.

Finally, there are two cases when line 15 (∗q = i) is analyzed. If ∗q
is found not to be aliased with ∗p according to the pointer analysis,
then no UAF bug exists. Otherwise, predict(∗q = i) comes into play.
The FSA for o will transit from dead to error if ⟨free(p), *q=i⟩ ∈
XML and remains in the dead state otherwise.

4 EVALUATION

Our evaluation aims to demonstrate the effectiveness of our
machine-learning-guided approach in detecting UAF bugs with
a low false alarm rate in real-world programs. We evaluate Tac
using eight popular open-source C/C++ programs described in Ta-
ble 4: rtorrent, a fast text-based BitTorrent client; less, a text file
viewer; bitlbee, a cross-platform IRC instant messaging gateway;
nghttp2, an implementation of hypertext transfer protocol; mupdf,
an E-book viewer; h2o, an optimized HTTP server, xserver, a win-
dowing system for bitmap displays on UNIX-like OS; and php, a
general-purpose scripting language for web development.

Tac is implemented in the LLVM compiler (version 3.8.0) [30].
The source files of each C/C++ program are compiled under -O0
into LLVM bit-code files by Clang and then merged using the LLVM
Gold Plugin at link time to produce a whole program bc file.
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In the training phase, Tac uses the widely-used SVM classifier
libSVM [10]. In the analysis phase, Tac’s pre-analysis is imple-
mented on top of SVF [59]. For the flow-sensitive demand-driven
pointer analysis [58] deployed in the analysis phase, the budget of
a points-to query is set as 50,000 (the maximum number of def-use
chains traversable) in the underlying pointer analysis to enable
early termination and returning conservative may-alias results.

Our experiments were conducted on a 3.0 GHZ Intel Core2 Duo
processor with 128 GB memory, running RedHat Enterprise Linux
5 (2.6.18). As listed in Table 4, the eight programs combined exhibit
a total of 2,098,502 LOC, containing 4,649 free sites and 616,960 use
sites. As shown in Table 5, these programs contain 6 known UAF
bugs, with 5 registered in the CVE database and 1 unregistered.

Table 5: 14 (distinct) UAF bugs detected by Tac, including 5

known CVE vulnerabilities and 1 known bug given in Col-

umn 2 and 8 new bugs given in Column 3.

Program
Known bugs New bugs

Identifier Detected #Detected
rtorrent — — 0
less — — 1
bitlbee CVE-2016-10188 ! 0
nghttp2 CVE-2015-8659 ! 0
mupdf BugID-694382 ! 0
h2o CVE-2016-4817 ! 5
xserver CVE-2013-4396 ! 0
php CVE-2015-1351 ! 2

4.1 The Training Phase

We train the SVM classifier for Tac using both false and true UAF
samples in real-world programs, as illustrated in Table 6. To gener-
ate false alarm samples, we run Tac-NML, an ESP-based typestate
analysis without machine learning, to analyze four relatively small
ones in the set of eight programs evaluated (Table 4), rtorrent,
less, bitlbee, and nghttp2. Then, we manually inspect 30% (a
limit set for the manual labor invested) of all the warnings reported
by Tac-NML for each program. To generate true UAF bugs, we use
all the 138 C programs and 322 C++ programs (which are small
programs extracted from real-world applications) in the CWE-416-
Use-After-Free category of Juliet Test Suite (JTS) [1], with each
program containing one single UAF vulnerability. In addition, we
also make use of synthetic UAF bugs automatically introduced into
the training programs, inspired by the bug insertion technique [47].
To do so, we first find all use-before-free pairs ⟨use(p), f ree(q)⟩ stat-
ically by conducting a control-flow reachability analysis from a
use(p) to a f ree(q), where ∗p and ∗q are aliases identified by a flow-
sensitive pointer analysis [58]. Next, we swapuse(p) and f ree(q) for
each pair and run Valgrind [43] to detect dynamically if the thus
injected UAF bug manifests itself as a true bug under the default
test inputs in every program. Finally, all UAF samples, including
623 false and 858 true bugs as shown in Columns 2 and 3 of Table 6,
are annotated for feature extraction.

The training phase applies the standard 5-fold cross validation
to find optimal intrinsic SVM parameters that yield the best clas-
sification accuracy. We consider three standard metrics: accuracy,

Table 6: Results of training. #True and #False are the num-

bers of true and false UAF samples, respectively.

Program
Samples Results

#True #False Accuracy Precision Recall
rtorrent 46 69 88.6% 81.0% 93.4%
less 22 237 96.9% 77.0% 91.0%
bitlbee 52 31 90.4% 86.7% 100.0%
nghttp2 43 61 82.7% 75.5% 86.0%
JTS-C 138 138 96.4% 97.8% 94.9%
JTS-C++ 322 322 97.4% 97.2% 97.5%
Total 623 858 95.0% 92.6% 95.8%

precision and recall. Accuracy is the percentage of correctly classi-
fied samples out of all the samples. Precision is the percentage of
correctly classified true positive samples out of the samples that
are classified as true positives. Recall is the percentage of correctly
classified true positive samples out of all the true positive samples.

Due to 5-fold cross validation, Tac is highly effective for the train-
ing programs, with its the accuracy, precision and recall results
given in Columns 4 – 6 of Table 6. For all the training programs
combined, Tac’s accuracy, precision and recall are 95.0%, 92.6%
and 95.8%, respectively. These results indicate that the SVM classi-
fier trained by using the 35 features (Table 2) and the RBF kernel
(Section 3.1) is effective in classifying true and false UAF samples.

4.2 The Analysis Phase

Our results are summarized in Table 7. Column 2 gives the number
of candidate UAF pairs computed by Tac’s pre-analysis, which
selects a candidate ⟨f ree(p),use(q)⟩ if f ree(p) can reach use(q)
context-sensitively via control-flow, where ∗p and ∗q are found to
be aliases by Andersen’s pointer analysis [5] implemented in [59].

In Columns 3 – 4, we give the results produced by Tac-NML
(i.e. Tac without machine learning). For each program, Column 3
gives the number of warnings reported and Column 4 gives the
reduction rate with respect to the number of warnings produced by
the pre-analysis. On average (across the eight programs), Tac-NML
achieves a reduction rate of 81.2%. This indicates that path-sensitive
typestate analysis alone is quite effective in improving the precision
of a coarse-grained pre-analysis. However, a total of 19,803 UAF
warnings are still reported, making Tac-NML impractical.

In Columns 5 – 6, we give the results produced by Tac when
machine learning is enabled. For each program, Tac has improved
Tac-NML significantly by reducing the number of warnings fur-
ther (Column 5) and thus achieving an impressive reduction rate
(with respect to Tac-NML) (Column 6). On average, Tac achieves a
reduction rate of 96.5%, resulting in only 266 warnings. This shows
its effectiveness in suppressing warnings raised.

Tac is also efficient, as shown in Column 7 (with the analysis
time of a program averaged over the five runs). Tac spends a total
of 4.2 hours on analyzing all the eight programs (consisting of 2,098
KLOC in total), with 90 seconds for the smallest program (less)
and 5,942 seconds for the largest program (php).

In the last three columns, with Column 8 giving the number of
true bugs (confirmed by manual inspection), Column 9 the false
positive rate (FPR), and Column 10 the true positive rate (TPR) for
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Table 7: Analysis results. #Candidates is the number of candidate UAF pairs found by pre-analysis. #Warns
Tac−NML

and

#Warns
Tac

denote the number of warnings reported by Tac-NML and Tac, respectively. Reduction1 is computed as (#Candi-

dates - #Warns
Tac−NML

) / #Candidates. Reduction 2 is computed as ( #Warns
Tac−NML

- #Warns
Tac

) / #Warns
Tac−NML

. #True

is the number of true bugs (confirmed by manual inspection), FPR is the false positive rate and TPR is the true positive rate.

Program #Candidates #WarnsTac−NML Reduction1 #WarnsTac Reduction2 Time (secs) #True FPR TPR
rtorrent 803 229 71.5% 0 100.0% 90 0 — —
less 4,628 790 82.9% 3 99.6% 316 1 66.7% 33.3%
bitlbee 529 113 78.6% 16 85.8% 151 9 43.8% 56.3%
nghttp2 975 210 78.5% 16 92.4% 83 7 56.3% 43.8%
mupdf 21,701 1,658 92.4% 50 97.0% 197 19 62.0% 38.0%
h2o 18,143 3,559 80.4% 23 99.4% 6,205 9 60.9% 39.1%
xserver 53,258 6,706 87.4% 102 98.5% 2,053 40 60.8% 39.2%
php 26,306 5,818 77.9% 56 99.0% 5,942 24 57.1% 42.9%
Total 126,343 19,083 — 266 — 15,037 109 — —

each program, we see that Tac is capable of finding UAF bugs at
low false positive rates. Out of the total 266 warnings reported, 109
are true bugs, yielding an FPR of 58.2% (or a TPR of 41.8%). Thus,
our machine-learning-guided approach is effective in locating UAF
bugs (with reasonable manual inspection effort required).

Among the 109 bugs found, 14 bugs are distinct (with the UAF
pairs sharing the same free site and dereferencing the same pointer
at their use sites being counted as one), as listed in Table 5. These
include 6 known ones (5 known CVE vulnerabilities and 1 known
bug) and 8 new ones (1 in less, 5 in h2o and and 2 in php).

For less, the 1 new bug is found in a while loop in
function ch_delbufs in ch.c (illustrated in Figure 7). For
h2o, the 5 new bugs are all interprocedural due to pre-
mature connection close operations, including one in func-
tion do_emit_writereq in connection.c (illustrated in Fig-
ure 8), one in function h2o_timeout_unlink in timeout.c,
one in function h2o_http2_scheduler_run in scheduler.c,
one in function h2o_linklist_unlink and one in function
h2o_linklist_islink in linklist.c. For php, the 2 new bugs
are interprocedural, found in zend_persist.c (illustrated in Fig-
ure 9).

It is important to emphasize that for the 14 distinct UAF bugs
found, as listed in Table 5, only 3 bugs appear in the four train-
ing programs. This demonstrates again the effectiveness of our
approach in applying machine learning to static UAF detection.

4.3 Case study

Let us take a look at some representative UAF bugs (both previously
known and unknown) found by Tac in three programs.

less. Figure 7 shows a new UAF bug found in less (version
451) by Tac. At line 782, the program frees an object pointed to by
bn and then starts possibly the next iteration of the while-loop at
line 778. At line 780, bn is made to point to the same freed object
and then dereferenced four times at line 781, causing one distinct
UAF bug. This bug occurs since the programmer forgot to update
ch_bufhead in the while loop after bn has been freed.

h2o. Figure 8 shows a known UAF bug (CVE-2016-4817) in h2o
(version 1.7.2) detected by Tac. The program frees conn at line 261
in close_connection_now through a nested call chain via lines 834
and 861. Then conn is used in the function timeout_unlink called

//ch.c
774  static void ch_delbufs()
775 {
776 register struct bufnode *bn;
777
778 while (ch_bufhead != END_OF_CHAIN)
779 {
780 bn = ch_bufhead;
781 (bn)->next->prev = (bn)->prev;

(bn)->prev->next = (bn)->next;
782 free(((struct buf *) bn));
783 }
784 ch_nbufs = 0;
785 init_hashtbl();
786   }

step2

step3
step4

step1

Figure 7: A UAF bug found in less, with the free, use and

their aliasing highlighted in pink, blue and red, respectively.

//lib/http2/connection.c
228 void close_connection_now(http2_conn_t *conn) {
261 free(conn);
262 }

811 static void parse_input(http2_conn_t *conn) {
829 if (ret < 0) {
834 close_connection_now(conn);
836 }
848 }

850 static void on_read(socket_t *sock, int stat) {
852 http2_conn_t *conn = sock->data;
861 parse_input(conn);
865 timeout_unlink(&conn->_write.timeout_entry);
866 do_emit_writereq(conn);
868 }

994 int do_emit_writereq(http2_conn_t *conn) {
1006 buf = {conn->_write.bbytes, conn->_write.bsz};
1007 socket_write(conn->sock, &buf, 1, on_w_compl);
1012 }

step1

step2

step3
step4
step5

step6
step7
step8

Figure 8: CVE-2016-4817 and two new bugs in h2o.

at line 865. Tac has succeeded in finding this CVE vulnerability and
also two new bugs on dereferencing conn at lines 1006 – 1007 in
the function do_emit_writereq called at line 866. These two new
bugs are counted as one distinct bug.

php. Figure 9 shows a known UAF bug (CVE-2015-1351) and
two new ones in php (version 5.6.7) detected by Tac. These bugs
are found in two files. CVE-2015-1351 is in zend_shared_alloc.c,

51



//ext/opcache/zend_shared_alloc.c
338 void *_zend_shared_memdup(void *source, size_t s){
349 if (free_source) {
350 free(source);
351 }
352 zend_shared_alloc_register_xlat_en(source, r);
353 return retval;
354 }

//ext/opcache/zend_persist.c
143 zend_ast *zend_persist_ast(zend_ast *ast) {
153 node = _zend_shared_memdup(ast, size);
154 for (i = 0; i < ast->children; i++) {
155 if ((&node->u.child)[i]) {
156 (&node->u.child)[i] = ...;
157 }
158 }
160 free(ast);
161 return node;
162 }

step1

step2

step3
step4

step5

Figure 9: CVE-2015-1351 and two new bugs in php.

where the object pointed by source is freed at line 350 and then
used inside a function called at line 352. In addition, Tac also finds
two new UAF bugs in zend_persist.c. One is a UAF, where the
object pointed to by source (and also by ast) is freed at line 350
and then accessed at line 154. The other is a double-free bug, as
the same object (pointed by source and ast) is freed at line 350
and then again at line 160. CVE-2015-1351 was fixed in the latest
version by simply moving line 352 to just before line 349. However,
the two new ones remain unfixed.

5 RELATEDWORK

UAF Detection. Most of the existing UAF detection techniques
rely on dynamic analysis. CETS [42] enforces full memory safety
by inserting metadata-manipulation instrumentations to perform
runtime checking at pointer dereferences for detecting temporal
memory errors, such as UAF. Undangle [9] applies dynamic taint
analysis on binary code to track and detect UAF bugs based on the
staleness of a pointer. Valgrind [43], as a memory-error debugging
tool, can detect UAF bugs in binary code, at high time and space
overheads. AddresSanitizer [52] performs a lightweight source level
instrumentation by leveraging compiler optimizations, but may
miss UAF bugs due to memory reallocation and unavailable (third-
party) library code during instrumentation.

Static UAF detectors exist but are rare. Model checking (as in, e.g.,
coccinelle [46]) and abstract interpretation (as in, e.g., Clang [4] and
Frama-C [16]) can be configured for UAF detection with user speci-
fied checking rules. However, they suffer from either the scalability
issue or high false negative rates due to the lack of interprocedural
analysis [4] and/or imprecision in handling aliases [46].

UAF Mitigation. Instead of detecting UAF bugs, some efforts
are made on protecting against their exploitation. Cling [3] and
Diehard [6] represent safe memory allocators that restrict memory
reallocation by checking type consistency or approximating infi-
nite heap. In these cases, dereferenced dangling pointers cannot
access memory reallocated to other objects. Thus, UAF exploits
are made harder. Alternatively, FreeSentry [32] and DangNull [32]
track pointer propagation to invalidate all aliased pointers immedi-
ately their pointed-to object is freed, at the expense of high runtime
and memory overheads. Control-flow integrity [2, 20, 44, 62, 64, 80]

restricts the program execution to follow a precomputed CFG even
if there are memory corruption bugs (e.g., UAF). Garbage collection
for C/C++ [7] can mitigate some UAF bugs based on its automatic
memory management. However, this requires every call to malloc()
to be replaced by a call to a special allocator, and is thus hardly
useful for legacy code and code using customized allocators.
Static Analysis for Memory Error Detection. Static analysis has
been used for detecting a wide range of memory errors, such as
buffer overflows [31, 35, 74], memory leaks [13, 60], uninitialized
variables [41, 75], information leaks [12, 22, 38], SQL injection and
XSS errors [25, 27, 63, 67], and format string vulnerabilities [55], on
top of various program representations, such as inter-procedural
SSA form [37, 60] abstract syntax tree [72], code property graph [71,
73], and value-flow graph [17, 59], to capture the syntax and/or
semantic properties of a program. Tac, developed on top of SVF [59],
inherits the strengths of traditional static analysis but also addresses
its limitations (e.g., imprecision in handling path-sensitivity, loops,
recursion cycles, arrays and lists) by learning and predicting the
UAF-related aliases using machine learning techniques.
Machine Learning for Bug Detection. In recent years, machine
learning techniques have been shown to be effective in guiding
program analysis for bug detection, such as fault invariant clas-
sification [8] for reflecting important aspects of fault-revealing
properties in a program, dynamic memory leak detection by classi-
fying staleness values of objects [33], defect prediction (e.g., [66]),
detection of malicious Java applets [51], source and sink classifica-
tion for information flow analysis for Android apps [49], automatic
program repair [39, 40], and abstract interpretation [24, 45]. This
paper introduces machine learning techniques to typestate analysis
for detecting temporal memory safety errors, such as UAF.

6 CONCLUSION

We present Tac, a machine-learning-guided static UAF detection
framework that bridges the gap between typestate and pointer
analyses by capturing the correlations between program features
and UAF-related aliases that are often imprecisely answered by the
state-of-the-art pointer analysis. Tac is effective (in terms of finding
5 known CVE vulnerabilities, 1 known bug, and 8 new bugs with
a low false alarm rate) and scalable (in terms of analyzing a large
real-world codebase with 2,098 KLOC in just over 4 hours).

Tac relies on pointer analysis and machine learning. Its accuracy
can be further improved in several ways. First, path-sensitivity
can be strengthened by solving path feasibility more soundly and
precisely. Currently, non-singleton objects are over-approximated
to contain ⊥ and path conditions are interpreted as non-satisfiable
when the underlying satisfiability solver returns unknown results
(causing infeasible paths to be considered conservatively as feasi-
ble). Second, a more advanced pointer analysis can itself enable
more UAF pairs to be ruled out as UAF bugs. Finally, a better SVM
classifier can be developed by adding more UAF training samples in
real-world programs and extending the set of features introduced.
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