
Spatio-Temporal Context Reduction: A Pointer-Analysis-Based
Static Approach for Detecting Use-After-Free Vulnerabilities †

Hua Yan ∗

School of Computer Science and Engineering

University of New South Wales, Australia

Yulei Sui ∗

Centre for Artificial Intelligence and School of Software

University of Technology Sydney, Australia

Shiping Chen
Data61

CSIRO, Australia

Jingling Xue
School of Computer Science and Engineering

University of New South Wales, Australia

ABSTRACT

Zero-day Use-After-Free (UAF) vulnerabilities are increasingly pop-

ular and highly dangerous, but few mitigations exist. We introduce

a new pointer-analysis-based static analysis, CRed, for finding UAF

bugs in multi-MLOC C source code efficiently and effectively. CRed

achieves this by making three advances: (i) a spatio-temporal con-

text reduction technique for scaling down soundly and precisely the

exponential number of contexts that would otherwise be considered

at a pair of free and use sites, (ii) a multi-stage analysis for filtering

out false alarms efficiently, and (iii) a path-sensitive demand-driven

approach for finding the points-to information required.

We have implemented CRed in LLVM-3.8.0 and compared it with

four different state-of-the-art static tools: CBMC (model checking),

Clang (abstract interpretation), Coccinelle (pattern matching),

and Supa (pointer analysis) using all the C test cases in Juliet Test

Suite (JTS) and 10 open-source C applications. For the ground-truth

validated with JTS, CRed detects all the 138 known UAF bugs as

CBMC and Supa do while Clang and Coccinelle miss some bugs,

with no false alarms from any tool. For practicality validated with

the 10 applications (totaling 3+ MLOC), CRed reports 132 warnings

including 85 bugs in 7.6 hours while the existing tools are either

unscalable by terminating within 3 days only for one application

(CBMC) or impractical by finding virtually no bugs (Clang and

Coccinelle) or issuing an excessive number of false alarms (Supa).

CCS CONCEPTS

• Security andprivacy→ Software and application security; •

Theory of computation→ Program analysis; • Software and

its engineering→ Software defect analysis;

KEYWORDS

use-after-free, program analysis, bug detection

∗These two authors contributed equally to this work.
†This work is supported by ARC Grants (DP180104069 and DE170101081).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180178

ACM Reference Format:

Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-Temporal

Context Reduction: A Pointer-Analysis-Based Static Approach for Detecting

Use-After-Free Vulnerabilities . In Proceedings of ICSE ’18: 40th International

Conference on Software Engineering , Gothenburg, Sweden, May 27-June 3,

2018 (ICSE ’18), 11 pages.

https://doi.org/10.1145/3180155.3180178

1 INTRODUCTION

Use-After-Free (UAF) vulnerabilities, i.e., dangling pointer derefer-

ences (referencing an object that has been freed), are increasingly

being exploited, as shown in Figure 1. UAF vulnerabilities are highly

dangerous, with 80.14% in the NVD database being rated critical or

high in severity, causing crashes, silent data corruption and arbi-

trary code execution. This vulnerability class persists in all kinds

of C/C++ applications. While other types of memory corruption

errors such as buffer overflows are nowadays harder to exploit due

to mitigations, there are few mitigations deployed in production

environments to prevent UAF vulnerabilities [53].

0
50

100
150
200
250
300

High Severity (7 - 10)
All Severity Levels (0 - 10)

Figure 1: Use-after-free vulnerabilities in NVD [49].

There have been considerable efforts on building automatic tools

for mitigating UAF bugs. However, existing solutions almost ex-

clusively rely on dynamic analysis [10, 12, 25, 30, 35, 47, 51, 53],

which inserts metadata-manipulating instrumentation code into

the program, and detects or protects against UAF bugs at runtime

by performing checks at all pointer dereferences [10, 30, 35, 51] or

invalidating all dangling pointers identified [25, 53]. While main-

taining zero or low false alarms (due to unsound modeling for, e.g.,

casting [30] and safety window sizes [10]), dynamic techniques

have a number of limitations, including low code coverage (when

used as debugging aids), binary incompatibility (due to memory

layout transformations such as fat pointers [51]), and high runtime

and memory overheads (due to runtime instrumentation).

Static analysis for detecting UAF bugs will not suffer from

such instrumentation-based limitations. However, static techniques

for UAF detection are scarce, with [18] focusing on binary code,

although there are several source code analysis tools for de-

tecting other types of memory corruption bugs, such as buffer

327

2018 ACM/IEEE 40th International Conference on Software Engineering

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue

overflows [24, 27], memory leaks [11, 44, 45] and null derefer-

ences [14, 29].

In this paper, we introduce a new pointer-analysis-based static

source code analysis for finding UAF bugs in multi-MLOC C pro-

grams efficiently and effectively. We first formulate the problem of

detecting UAF bugs statically. We then describe several challenges

faced, existing static techniques (for analyzing C/C++ source code),

and our solution (by highlighting its novelty).

Problem Statement. Consider a pair of statements,(
free(p@lf), use(q@lu)

)
, where p and q are pointers and

lf and lu are line numbers. Let P(l) be the set of all feasible

(concrete) program paths reaching line l from main(). The pair is

a UAF bug if and only if ST
(
free(p@lf), use(q@lu)

)
holds:

[Spatio-Temporal Correlation]

ST
(
free(p@lf), use(q@lu)

)
�

∃ (ρf , ρu) ∈ P(lf)×P(lu) : (ρf ,lf)� (ρu,lu) ∧ (ρf ,p)� (ρu,q)

(1)

where � denotes temporal reachability (in the program’s ICFG

(Interprocedural Control Flow Graph)) and � denotes a spatial alias
relation (meaning that p and q point to a common object). By con-
vention, (ρ, l) identifies the program point l under a path abstrac-
tion ρ. Both temporal and spatial properties must correlate on the
same concrete program path. However, ST is not computationally

verifiable due to exponentially many paths in large codebases.

Challenges. One main challenge faced in designing a pointer-

analysis-based static UAF analysis, A, lies in how to reason about

the exponential number of program paths in P(lf) × P(lu) in order
to find real bugs at a low false positive rate. This entails approx-

imating ST with STA by abstracting these program paths with

some contexts according to a tradeoff to be made among soundness,

precision and scalability. A is sound (by catching all UAF bugs)

if ST
(
free(p@lf), use(q@lu)

)
⇒ ST

A
(
free(p@lf), use(q@lu)

)
for every UAF pair

(
free(p@lf), use(q@lu)

)
. A is precise (by

reporting no false alarms if STA
(
free(p@lf), use(q@lu)

)
⇒

ST
(
free(p@lf), use(q@lu)

)
for every

(
free(p@lf), use(q@lu)

)
.

A is regarded as being scalable if STA can analyze large code-

bases under a given budget. For convenience, STA is also said to

be sound/precise/scalable if A is sound/precise/scalable.

Another challenge is how to verify� efficiently and precisely,

especially in the presence of aliasing, as discussed below.

A final challenge lies in how to obtain � efficiently and precisely.
This requires a pointer analysis that is field-sensitive (by distinguish-

ing different fields in a struct), flow-sensitive (by distinguishing flow

of control), context-sensitive (by distinguishing calling contexts for

a function), and path-sensitive (by distinguishing different program

paths). However, computing such precise points-to information

by reasoning about P(lf) × P(lu) is unscalable, despite recent ad-
vances on whole-program [5, 17, 19, 26, 28, 40, 41, 46, 52, 54] and

demand-driven [20, 42, 56] pointer analyses for C/C++ programs.

State of the Art. Due to the above challenges, there has been

little work on developing specialized static approaches for detect-

ing UAF bugs at the source-code level. General-purpose static ap-

proaches for detecting memory corruption bugs include model

checking [6, 8, 22], abstract interpretation [3, 16, 21], pattern match-

ing [33], and pointer analysis [38, 42]. Their corresponding repre-

sentative tools are CBMC [22], Clang [3], Coccinelle [33], and

Supa (which can be leveraged for finding UAF bugs) [42].

Model Checking. CBMC [22] is a bounded model checker that

reasons about all the program paths in P(lf)×P(lu) given in (1) for
C/C++ programs as constraints that can be solved by an SMT solver.

When used in finding UAF bugs, CBMC is sound (in a bounded

manner) and highly precise but scales only to small programs [48]

whose “sizes are restricted” (according to its user manual).

Abstract Interpretation. Clang [3] is an abstract interpreter for

analyzing C/C++ programs. It adopts a highly unsound model by

analyzing only a small subset of the program paths in P(lf)×P(lu)
given in (1) in order to achieve scalability and precision. To scale

for large codebases with few false alarms, Clang limits its UAF-

bug-finding ability by performing an intraprocedural analysis (with

inlining). In general, such tools refrain from reporting too many

false alarms, but at the expense of missing many UAF bugs.

Pattern Matching. Coccinelle [33] is a pattern-based tool for

analyzing and certifying C programs. Coccinelle can find UAF

bugs based on some patterns given. Due to the lack of the points-to

information, Coccinelle can be both fairly unsound and imprecise

but is highly scalable (due to its pattern-matching nature).

Pointer Analysis. Supa [42] is a state-of-the-art demand-driven

pointer analysis that is field-, flow- and context-sensitive but path-

insensitive for C programs. When used in finding UAF bugs, Supa

can be regarded as reasoning about all the program paths in P(lf)×
P(lu) with an extremely coarse abstraction, {[]} × {[]}, in order

to achieve soundness and scalability. By convention, [] represents

all possible calling contexts and thus all possible (concrete) paths

reaching l . Thus, ST in (1) is weakened significantly to STSupa:

[Spatio-Temporal Correlation with a High Level of Spuriosity]

ST
Supa (

free(p@lf), use(q@lu)
)
�

([],lf)� ([],lu) ∧ ([],p)� ([],q)

(2)

where� is the standard context-sensitive reachability and � is the
standard context-sensitive alias relation obtained under [].

When used in finding UAF bugs, STSupa will be highly im-

precise, since spurious spatio-temporal correlations are intro-

duced at an extremely large number of UAF pairs, where

ST
Supa (

free(p@lf), use(q@lu)
)
� ST

(
free(p@lf), use(q@lu)

)
holds, as explained in Section 2 and validated in Section 5. These

spurious correlations are false alarms.

Our Solution and Contributions. We introduce an (interpro-

cedural) pointer-analysis-based static analysis, CRed, for finding

UAF bugs in multi-MLOC C code, by making several contributions.

First, we present a spatio-temporal context reduction technique

that enables developing our new static UAF analysis systematically

by simplifying ST in (1) into STCRed given below:

[Spatio-Temporal Context Reduction]

ST
CRed (

free(p@lf), use(q@lu)
)
�

∃ (ρ̃f , ρ̃u) ∈ P̃(lf)× P̃(lu) : (ρ̃f ,lf)� (ρ̃u,lu) ∧ (ρ̃f ,p)� (ρ̃u,q)

(3)

We ensure that STCRed is sound by requiring P̃(l) to be a

coarser abstraction of P(l) and scalable by requiring |P̃(lf) ×

328

Spatio-Temporal Context Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

P̃(lu)| � |P(lf) × P(lu)|. Unlike ST
Supa, however, STCRed

will be highly precise, as STCRed
(
free(p@lf), use(q@lu)

)
�

ST
(
free(p@lf), use(q@lu)

)
happens only for a small number of

UAF pairs.With spatio-temporal context reduction, CRed is designed

purposely to preserve the spatio-temporal correlation of ST by keeping

spurious correlations, i.e., false alarms, as low as possible.Without it,

CRed will be either highly unsound or highly imprecise.

Second, we adopt a multi-stage approach that starts with some

UAF pairs obtained by a pre-analysis and then uses increasingly

more precise yet more costly UAF analyses on increasingly fewer

UAF pairs to filter out false alarms. In our current implementation,

we perform context reduction by first using calling contexts and

then considering path sensitivity. Staging such analyses this way

improves the efficiency of the overall solution.

Third, we introduce a demand-driven pointer analysis with field-,

flow-, context- and path-sensitivity as the foundation for the main

analysis stages of CRed. This work is the first to consider path-

sensitivity on-demand in order to reduce false UAF alarms.

Finally, we have implemented CRed in LLVM-3.8.0 and com-

pared it with four state-of-the-art source-code analysis tools: CBMC

(model checking) [22], Clang (abstract interpretation) [3], Coc-

cinelle (pattern matching) [33], and Supa (pointer analysis) [42]

using all the C test cases in Juliet Test Suite (JTS) [1] and 10 open-

source C applications. For the ground truth evaluated with JTS,

CRed is as effective as CBMC and Supa by detecting all the 138

knownUAF bugswhile Clang reports only 36 bugs and Coccinelle

finds 126 bugs, with no false alarms issued in all the cases. For prac-

ticality evaluated with the 10 applications (totaling over 3 MLOC),

CRed produces 132 warnings including 85 bugs in about 7.6 hours.

In contrast, CBMC produces no warnings, terminating in 19.0 hours

for the smallest application but exceeding the 3-day time budget for

every remaining application; Clang reports 3 warnings including

1 bug in 1.2 hours; Coccinelle reports 103 false alarms in 179.0

seconds without finding any bugs; and Supa detects the same 85

bugs found by CRed, together with 23,095 false alarms, in 5.1 hours.

2 OVERVIEW

Bug
Report

Demand-Driven Pointer Analysis

Program

Pre-
Analysis

Context
Reduction

Path-
Sensitivity

Figure 2: Workflow of CRed.

As depicted in Figure 2, we start with a fast but imprecise “Pre-

Analysis” (i.e., an Andersen-style pointer analysis [4]) to obtain a

set of candidate UAF pairs to be analyzed (according to (1)). We then

apply two spatio-temporal context reductions, “Calling Context

Reduction” (Section 2.1) and “Path Reduction” (Section 2.2), founded

on the same demand-driven pointer analysis infrastructure. Note

that each stage refines the results from the preceding one.

We focus on describing how calling-context reduction works

and why it is significant. Without the two reduction techniques,

a UAF analysis that relies on existing pointer analysis techniques

will be either unscalable or highly imprecise (Section 5).

2.1 Calling-Context Reduction

The objective is to simplify ST in (1) into STCRed in (3) by abstract-

ing program paths with calling contexts so that CRed is sound,

scalable and precise. Our example is given in Figure 3.We use whole-

program pointer analysis [19, 26, 52, 54] to explainwhyCRedwould

be unscalable if full calling contexts were used (although it would

be highly precise) and imprecise if k-limited calling contexts were
used (although it would be possibly scalable). These arguments

apply also to demand-driven pointer analysis [20, 36, 42, 56] (as val-

idated later). We achieve both efficiency and precision by reducing

full calling contexts substantially in both length and quantity.

2.1.1 Context-Sensitivity. We introduce the terminologies and

notations used in context-sensitive program analysis.

• Call String (or Call Stack). In a k-limited or k-callsite context-
sensitive analysis, every variable accessed or object allocated in a

function fun is identified by a call string c = [c1, . . . , ck], known
as a calling context, which represents a sequence of the k-most-
recent call sites (on the call stack) calling fun. In a call string,
every recursion cycle is typically approximated once. The analy-

sis is said to be fully context-sensitive if c1 starts from main().

• Context-Sensitive Control-Flow Reachability. Given two

program points l and l ′ identified under contexts c and c ′, respec-
tively, (c, l)� (c ′, l ′) signifies that (c, l) reaches context-sensitively
(c ′, l ′). This is solved as a balanced-parentheses problem by match-

ing calls and returns to filter out unrealizable paths in the pro-

gram’s ICFG [34]. We start from (c, l) with an abstract stack

initialized as c . When entering a callee function from a callsite ci ,
we push ci into the context stack containing c , denoted c ⊕ [ci].
When returning from a callee to a callsite c j , we pop c j from the

current stack containing c , denoted c � [c j], if c contains c j as its
top value or c = [] since a realizable path may start and end in

different functions. Finally, (c, l)� (c ′, l ′) is established if l ′ is
reached when the context stack contains c ′.

• k-Call-Site Context-Sensitive Pointer Analysis. Let pt(c,v)
be the points-to set of a variable v under a calling context c such
that |c | = k . Given two variables p and q, (c,p) � (c ′,q) holds if p
and q may point to a common object, i.e., pt(c,p) ∩ pt(c ′,q) � ∅.

Here, c (c ′) represents the calling sequence for the function where
p (q) is defined and h (h′) represents the calling sequence for the
function where object o is allocated. We speak of full context-

sensitivity if c , c ′, h and h′ all start from main().

2.1.2 Limitations of k-Call-Site Context-Sensitivity. Figure 3(a)
illustrates a typical heap usage scenario. In lines 1 – 11, there are

2n calling contexts to com() from main(). In lines 12 – 35, two

heap objects are allocated (lines 14 – 15), then used (lines 16 and

18), and finally, deallocated (lines 17 and 19), through a series of

wrappers. There is one UAF pair
(
free(p@ln34), use(q@ln31)

)
to

be analyzed, where use(q@ln31) stands for print(*q) at line 31.
This example is UAF-free. With full context-sensitivity, no warn-

ings would be reported but the resulting analysis is unscalable.

With k-limiting, the analysis scales, but at the expense of precision.

• Full Context-Sensitivity: Precise but Unscalable. As shown

in Figure 3(b), R is the set of 2n full calling contexts for com().

Thus, there are 2n+1 × 2n+1 calling context pairs reaching(
free(p), print(*q)

)
. As ∀c ∈ R : (c ⊕ [c5, c9], ln34) �

329

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue

1:int main() {

2: f1();//ca1
3: f1();//cb1
4:}

5:void f1() {

6: f2();//ca2
7: f2();//cb2
8:}

... ...

9:void fn() {

10: com();//c1
11:}

12:int *x, *y;

13:void com() {

14: x = xmalloc();//c2
15: y = xmalloc();//c3
16: xuse(x); //c4
17: xfree(x);//c5
18: xuse(y); //c6
19: xfree(y);//c7
20:}

21:int* xmalloc() {

22: return malloc(1);//o
23:}

24:void xuse(int* u) {

25: xxuse(u); //c8
26:}

27:void xfree(int* v) {

28: xxfree(v); //c9
29:}

30:void xxuse(int* q) {

31: print(*q); //use(q)
32:}

33:void xxfree(int* p) {

34: free(p);
35:}

(a) Program

pt([ca1, ..., can , c1, c5, c9], p) = { ([ca1, ..., can , c1, c2],o) }
pt([ca1, ..., can , c1, c7, c9], p) = { ([ca1, ..., can , c1, c3],o) }
pt([ca1, ..., can , c1, c4, c8], q) = { ([ca1, ..., can , c1, c2],o) }
pt([ca1, ..., can , c1, c6, c8], q) = { ([ca1, ..., can , c1, c3],o) }

...

pt([cb1, ..., cbn , c1, c5, c9], p) = { ([cb1, ..., cbn , c1, c2],o) }
pt([cb1, ..., cbn , c1, c7, c9], p) = { ([cb1, ..., cbn , c1, c3],o) }
pt([cb1, ..., cbn , c1, c4, c8], q) = { ([cb1, ..., cbn , c1, c2],o) }
pt([cb1, ..., cbn , c1, c6, c8], q) = { ([cb1, ..., cbn , c1, c3],o) }

(c) Fully context-sensitive points-to sets

pt([c9], p) = { ([c2],o), ([c3],o) }
pt([c8], q) = { ([c2],o), ([c3],o) }

pt([c5, c9], p) = {([c2],o)}
pt([c7, c9], p) = {([c3],o)}
pt([c4, c8], q) = {([c2],o)}
pt([c6, c8], q) = {([c3],o)}

(d) k-limited context-sensitive (e) Points-to sets with
points-to sets (k = 1) calling-context reduction

: call
: return... ...

main

free(p)
xxfree

:૛ࢉ x=xmalloc()ࢉ૜: y=xmalloc()ࢉ૝: xuse (x)ࢉ૞: xfree(x)ࢉ૟: xuse (y)ࢉૠ: xfree(y) :ૢࢉ xxfree(v)
xfree

malloc()
xmalloc

com
(Common Caller)

:ૡࢉ xxuse(u)
xuse

print(*q)
//use(q)

xxuse

:૚ࢉ com()
fn

[,૚ࢇࢉ ,૛ࢇࢉ … , ,࢔࢈ࢉ ૚ࢉ]
…

[,૚ࢇࢉ ,૛ࢇࢉ … , ,࢔ࢇࢉ ૚ࢉ]

[,૚࢈ࢉ ,૛࢈ࢉ … , ,࢔࢈ࢉ ૚ࢉ][,૚࢈ࢉ ,૛࢈ࢉ … , ,࢔ࢇࢉ ૚ࢉ]
[,૙ࢇࢉ ,૛ࢇࢉ … , ,࢔ࢇࢉ ૚ࢉ]… ,[,૙ࢇࢉ ,૛ࢇࢉ … , ,࢔࢈ࢉ ૚ࢉ]… , ૛܀࢔ =

෦ࢌࢉ ∈ ૢࢉ,૞ࢉ , ࢛ࢌࢉૢࢉ,ૠࢉ ∈ ࡾ ෦࢛ࢉ ∈ ૡࢉ,૝ࢉ , ૡࢉ,૟ࢉ

com

……
…main f1 f2 fnfn-1… call strings from main to com

෪ࢎ ∈ [૜ࢉ],[૛ࢉ]
(b) Interprocedural control flow graph (ICFG)

Figure 3: Calling-context reduction for overcoming the limitations of full and k-limited context-sensitivity in UAF detection.

...

main malloc() :ࢌ࢒࢕// free(࢖)࢛࢒: use(ࢗ)

Common Caller࢕࢒: Transitively call malloc࢖࢒: Transitively call free

:ࢗ࢒ Transitively call use
෦࢛ࢉ෦ࢌࢉ
෪࢛ࢌࢉࢎ

⊕࢛ࢌࢉ) ෪ࢎ , (࢕ ∈ ஶ࢚࢖ ࢛ࢌࢉ ⊕ ෦ࢌࢉ , ࢖ ∩ ࢛ࢌࢉ)ஶ࢚࢖ ⊕ ෦࢛ࢉ , (ࢗ

Figure 4: Context reduction, illustrated conceptually with

an oracle fully-context-sensitive pointer analysis.

(c ⊕ [c6, c8], ln31), free(p) reaches print(*q). However, as

� c ∈R, ([c⊕[c5, c9], p) � ([c⊕[c6, c8], q), p and q never point to
a common object. Therefore, no UAF warning will be issued. To

reason about �, however, we may have to compute 2n+2 points-
to sets in Figure 3(c), making existing pointer analysis techniques

[19, 38, 42, 52] unscalable when n is large (as validated later).

• k-Limiting: Scalable but Imprecise.With k = 1, the 2n+1 call-
ing contexts reaching free(p) (print(*q)) are abstracted by

[c9] ([c8]). Then ([c9], ln34)� ([c8], ln31). In addition, ([c9], p) �
([c8], q) holds spuriously, based on the two points-to sets in Fig-
ure 3(d), computed imprecisely but possibly efficiently. Thus, a

false alarm (from line 17 to line 18) is reported.

With 2-limiting, the false alarm will be suppressed. However,

increasing k will not work for large codebases for two reasons.
First, the number of context pairs to be analyzed at a UAF pair will

grow exponentially. Second, the optimal values for k vary across
the UAF pairs. Finding such values is beyond the state-of-the art.

2.1.3 Spatio-Temporal Calling-Context Reduction. The key in-

sight is to remove prefixes in full calling contexts that do not con-

tribute to context-sensitivity, thereby achieving the precision of

full context-sensitivity and the scalability of k-limiting.

Let pt∞(c,v) be the points-to set of v under context c computed
by an oracle pointer analysis fully context-sensitively. As illustrated

in Figure 4,
(
free(p@lf), use(q@lu)

)
is a bug when C1 – C4 hold:

(C1): main() calls, under a context cf u , a common caller function,
which calls an object allocation function, e.g., malloc(), free(p)
and use(q) at lines lo , lp and lq in that order,

(C2): o is allocated under context cf u ⊕ h̃,

(C3): (cf u ⊕ h̃, o) ∈ pt∞(cf u ⊕ c̃f , p), and

(C4): (cf u ⊕ h̃, o) ∈ pt∞(cf u ⊕ c̃u , q).

By definition, (cf , lf) � (cu , lu) ∧ (cf ,p) � (cu ,q) ⇐⇒

(c̃f , lf) � (c̃u , lu) ∧ (c̃f ,p) � (c̃u ,q), making cf u redundant.

For our example, Figure 3(b) illustrates the calling context reduc-

tion performed. As cf u ∈ R is a common prefix for the common

caller, com(), that satisfies C1 – C4, a total of 2n+1×2n+1 full calling

context pairs reaching
(
free(p), print(*q)

)
have been reduced to

just four, with (c̃f , c̃u) ∈ {[c5, c9], [c7, c9]} × {[c4, c8], [c6, c8]} and

h̃ ∈ {c2, c3}. As com() is a common caller, (c ⊕ c̃f , p) � (c ′ ⊕ c̃u , q)
does not hold, i.e., p and q are must-not-aliases if c and c ′ are differ-
ent prefixes inR. Thus, it is only necessary to verify (c⊕c̃f , ln34) �
(c ′ ⊕ c̃u , ln31) when c = c

′. We can do this efficiently by checking if

car(c̃f) appears lexically before car(c̃u) in com(), i.e., if lp appears
before lq in Figure 4. Note that car is the standard function for

returning the first element in a sequence. For the four reduced

context pairs, only ([c5, c9], ln34) � ([c6, c8], ln31) holds since c5
precedes c6 in com(). According to the points-to sets, shown in

Figure 3(e), computed efficiently for the reduced calling contexts,

([c5, c9], p)
� ([c6, c8], q). Hence, no UAF warnings are reported.

2.2 Path Reduction

We improve precision by augmenting calling contexts with

330

Spatio-Temporal Context Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

1:void foo() {
2: p = malloc(...);//o1
3: if (cnd) {
4: free(p); //free(p@ln4)
5: p = malloc(...);//o2
6: }
7: print(*p); //use(p@ln7)
8:}

Figure 5: Path reduction.

path-sensitivity. Consider a bug-

free example in Figure 5. Without

path-sensitivity, p at line 4 points

to o1 and q at line 7 points to o1
and o2, causing a path-insensitive
detector to report a false alarm(
free(p@ln4), use(p@ln7)

)
. With

path-sensitivity, however, this false

alarm will be suppressed successfully.

To the best of our knowledge, CRed is the first UAF detector

for large codebases that reasons about path-sensitivity on-demand

based on a new path-sensitive demand-driven pointer analysis.

3 THE CRED ANALYSIS FOR UAF DETECTION
As shown in Figure 2, CRed comprises three key components: 1©
spatio-temporal context reduction, 2© demand-driven pointer anal-

ysis, and 3© multi-stage UAF analysis. While 1© represents the

most important contribution of this paper, we introduce 2© and 3©
first in that order in order to build the basis for 1©.

3.1 Demand-Driven Pointer Analysis

We describe a demand-driven pointer analysis that is not only field-,

flow- and context-sensitive as in [38, 42] but also path-sensitive.

Adding path-sensitivity is significant in terms of both advancing

demand-driven pointer analysis in general and reducing a large

number of false alarms that would otherwise be reported by CRed.

3.1.1 Program Representation. A C program is represented

by putting it into LLVM’s partial SSA form, following [19, 26, 28, 52].

The set of program variablesV is separated into two subsets: A

containing all possible targets, i.e., address-taken variables of a

pointer, and T containing all top-level variables, whereV = T ∪A.

After the SSA conversion, a program has seven types of state-

ments: p=&a (AddrOf), p=q (Copy), p=∗q (Load), ∗p=q (Store),
p=ϕ(...,q, ...) (Phi),p=callfun(q) (Call), and returnp (Return),
where p,q ∈ T and a ∈ A. Top-level variables are put directly in

SSA form while address-taken variables are accessed indirectly

via Load or Store. For an AddrOf statement p =&a, known as
an allocation site, a is a stack or global variable with its address
taken or a dynamically created abstract heap object. Passing pa-

rameters and return values (explicitly for top-level and implicitly

for address-taken variables) is modeled by Copy.

All pointer analyses used are field-sensitive. Each field instance

of a struct is treated as a separate object. However, arrays are

considered monolithic. Precise solutions for arrays do not exist.

Given a program, its ICFG is built in the normal manner [23].

A call site for a function fun is split into a call node and a return
node, with a call edge from the call node to the entry node of fun
and a return edge from the exit node of fun to the return node.

3.1.2 Algorithm. As shown in Figure 6, we extend [38, 42] by

making it also path-sensitive with the required path guards gener-

ated on-demand. Our analysis is flow-sensitive, since it answers a

points-to query for a variable v by traversing all the def-use chains

affecting v backwards on a value-flow graph (VFG) [19, 43, 44].

In the VFG, a node represents a statement (identified by its line

number) and an edge from statement l to statement l ′, denoted

l
v
→ l ′, represents a def-use relation for a variable v ∈ V , with its

[ADDR]
c,τ , l : p = &o

(c,τ , l ,p) ←↩ (c,τ ,ol)

[COPY]
c,τ , l : p = q lq

q
→ l δq = Guard(lq , l)

(c,τ , l ,p) ←↩ (c,τ ∧ δq , lq ,q)

[PHI]
c,τ , l : p = ϕ(..,q, ..) lq

q
→ l δq = Guard(lq , l)

(c,τ , l ,p) ←↩ (c,τ ∧ δq , lq ,q)

[LOAD]

c,τ , l : p = ∗q (c,τ ∧ δq , lq ,q) ←↩ (co ,τo ,o)

lq
q
→ l lo

o
→ l δq = Guard(lq , l) δo = Guard(lo , l)

(c,τ , l ,p) ←↩ (co ,τo ∧ δo , lo ,o)

[STORE]

c,τ , l : ∗p = q (c,τ ∧ δp , lp ,p) ←↩ (co ,τo ,o)

lp
p
→ l lq

q
→ l lo

o
→ l

δp = Guard(lp , l) δq = Guard(lq , l) δo = Guard(lo , l)

(co ,τo , l ,o) ←↩ (c , τ ∧ δq , lq ,q)
(co ,τo , l ,o) ←↩ (co ,τo ∧ δo , lo ,o)

[CALL]

c,τ , l :define fun(v) {...} lcall : call fun(a)

la
a
→ lcall δa = Guard(la , lcall)

(c,τ , l ,v) ←↩ (c � [l],τ ∧ δa , la ,a)

[RETURN]

c,τ , l : y = call fun(...) define fun(...) {..., lr et :return x}

lx
x
→ lr et δx = Guard(lx , lr et)

(c,τ , l ,y) ←↩ (c ⊕ [l],τ ∧ δx , lx ,x)

[TRANS]
(c,τ , l ,v) ←↩ (c ′,τ ′, l ′,v ′) (c ′,τ ′, l ′,v ′) ←↩ (c ′′,τ ′′, l ′′,v ′′)

(c,τ , l ,v) ←↩ (c ′′,τ ′′, l ′′,v ′′)

Figure 6: Demand-driven pointer analysis with field-, flow-

and context-sensitivity as in [42] and path-sensitivity added.

def at statement l and its use at statement l ′. These def-use chains
are pre-computed with a fast but imprecise Andersen-style pointer

analysis flow- and context-insensitively [4]. Our analysis is also

context-sensitive. The points-to query pt([c1, . . . , ck],v), where ci
identifies a call site, returns the points-to set ofv for all the function

calling sequences ending with [c1, . . . , ck]. Thus, pt([],v@l) gives
the points-to set of v at line l at all calling contexts.
We explain our extension on handling path-sensitivity high-

lighted in red. Calling contexts are path abstractions but can be

too coarse. To perform path-sensitive analysis, we represent an

abstract path by both a calling context c and a path guard τ so that
c specifies its calling sequence and τ collects its branch conditions.
Thus, pt((c,τ),v@l) gives the points-to set ofv at line l under (c,τ).

In a function fun, every branch condition is treated as a Boolean
formula. As in [11, 44, 46], a loop (after unrolling, if needed) is ap-

proximated only once with its back edge ignored. For each control-

flow edge e , EdgeGuard(e) is the branch condition under which

e is executed. For a control-flow path cp, which consists of a set
of control-flow edges e , the path condition is the logical conjunc-

tion of branch conditions of e , i.e.,
∧

e ∈cp
EdgeGuard(e). A path guard

Guard(l , l ′) from a statement l to a statement l ′ in fun is the logical
disjunction of path condition of all control-flow paths from l to l ′:

Guard(l , l ′) =
∨

cp∈Path(l,l ′)

∧
e ∈cp

EdgeGuard(e) (4)

where Path(l , l ′) denotes the set of control-flow paths from l to l ′.
A path guard τ from the entry of main() to a statement is de-

fined simply in terms of (4). For the two special cases, true (false)

represents an abstract feasible (infeasible) path.

331

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue

Given (c,τ , l ,v), where variable v appears at line l , the points-to
set of v is computed by finding all reachable objects (co ,τo ,o) via
backward traversal on the pre-computed def-use chains:

pt((c,τ),v@l) = {(co ,τo ,o) | (c,τ , l ,v) ←↩ (co ,τo ,o)} (5)

The first seven rules handle the seven types of statements in

the program by traversing backwards along all the pre-computed

def-use chains affecting v@l . The last says that←↩ is transitive. In
[ADDR], objects created at different allocation sites are identified by

their line numbers. In [CALL], a ∈V denotes a variable passed into

the callee directly or indirectly via parameter passing. Similarly, x
in [RETURN] represents a value returned directly or indirectly from

the callee to its caller. Context-sensitivity is enforced by matching

calls and returns. In c⊕[l], the callsite label l is appended to c . In
c�[l], l is removed from c if c contains l as its top value or is empty
since a realizable path may start and end in different functions [39].

Strong updates are performed on singleton objects as in Supa [42].

For a program, its call graph is built on the fly. Our analysis han-

dles its SCCs (Strongly Connected Components) context-sensitively

but the function calls in an SCC context-insensitively as in [39].

Thus, our analysis is fully field- and flow-sensitive as well as fully

context- and path-sensitive (modulo loops and recursion cycles).

main() { ln1 - ln5

ln6

ln8

ln7

return

cnd

true

true

cnd

cnd

cnd

Guard(ln1, ln2) = true
1: p = &o1; Guard(ln1, ln4) = true
2: x = &o2; Guard(ln1, ln6) = cnd
3: y = &o3
4: *p = x; Guard(ln1, ln8) = Guard(ln4, ln8)
5: if(cnd) = (cnd∧¬cnd) ∨ (¬cnd∧¬cnd)
6: *p = y; = ¬cnd
7: if(!cnd)
8: z = *p; Guard(ln6, ln8) = ¬cnd

}
(a) Code (b) CFG (c) Path Guards

Figure 7: Path guard construction on a CFG.

3.1.3 Example. We use an example in Figure 7 to explain our

rules on on-demand path-guard generation, with some relevant

path guards shown. Suppose a points-to query pt(([], true), z@ln8)
is issued. With path-sensitivity, we can determine precisely that z
points only to o2 but not o3. In line 8, [LOAD] is applied:

[], true, ln8 : z = *p ([],¬cnd, ln1, p) ←↩ ([],¬cnd,o1) ln1
p
→ ln8

δp=Guard(ln1, ln8)= ¬cnd δo1 =Guard(ln4, ln8)=¬cnd ln4
o1
→ ln8

([], true, ln8, z) ←↩ ([],¬cnd, ln4,o1)

Similarly, applying [STORE] and [ADDR] to lines 4 and 2, respectively,

yields ([],true, ln8, z) ←↩ ([],¬cnd, ln4,o1) ←↩ ([],¬cnd, ln2, x) ←↩

([],¬cnd,o2). Thus, z points to o2. We can also attempt to

trace z backwards to o3 via *p = y, by first applying [LOAD]

in line 8, which produces ([], true, ln8, z) ←↩ ([],¬cnd, ln6,o1).
However, no more rules can be applied further, because

([],¬cnd, ln6,o1)
←↩ ([],¬cnd∧cnd, ln6, y), as ¬cnd∧cnd = false,

representing an infeasible path. Thus, z cannot point to o3.

3.2 Multi-Stage UAF Analysis

CRed, as shown in Figure 2, consists of two stages, Stages 1 and 2.

Each stage decides whether to issue a warning or not for a given

UAF pair by verifying its own version of STCRed given in (3), which

is discussed below. The pre-analysis, which serves to provide the

set of UAF pairs for CRed to analyze, can be regarded as Stage 0.

main
malloc()//ࢌ࢒࢕: free(࢖)࢛࢒:use(ࢗ)

…

common
callerࢗ࢒(࢖࢒)࢕࢒ ାࢉ࢛ࢉ෦࢖ࢎ෪ିࢉ

෦ࢌࢉ ࢗࢎ෪=ିࢉ⨁ାࢉ =࢖ࢎା⨁෪ࢉ
main

malloc()//ࢌ࢒࢕: free(࢖)࢛࢒:use(ࢗ)

…

common
caller

ࢗ࢒࢖࢒
࢕࢒

෦࢛ࢉ
෦ࢌࢉ

෪࢖ࢎ(෪ࢗࢎ)

(a) (b)

Figure 8: Context reductionwith a demand-driven flow- and

context-sensitive pointer analysis that computes the points-

to set of a variable under the calling context []. Boxes and ar-

rows represent functions and (transitive) calls, respectively.

Each stage is founded on a pointer analysis, Pi . In Stage 0 (our pre-
analysis), P0 is flow-, context- and path-insensitive. In Stage 1 (with
calling-context reduction), P1 is flow- and context-sensitive on-

demand. In Stage 2 (with path reduction), P2 is also path-sensitive.
As i increases, Stage i becomes progressively more precise but

also more costly, working on filtering out false alarms from an

increasingly smaller set of UAF warnings provided by Stage i−1.
At Stage i , where 1 � i � 2, we obtain� and � as follows. To

obtain �, we invoke Pi to compute the points-to set pti (ρi ,v), with
pt in (5) subscripted by i , for every variable v needed on-demand

under a budget ηi . Here, ρi is an appropriate path abstraction used
by Pi for querying v . If ηi is exhausted before pti (ρi ,v) is found,
we fall back to Pi−1 by setting pti (ρi ,v) = pti−1(ρi−1,v) conserva-
tively, where the set of concrete paths abstracted by ρi is a subset
of the set of concrete paths abstracted by ρi−1. To obtain �, we

compute it on the ICFG obtained in Stage 0 and refined with the

function pointers being resolved more precisely by Pi .

3.3 Spatio-Temporal Context Reduction

We describe two reductions performed for Stages 1 and 2, with the

latter being developed on top of the former, making Stage 2 more

precise but also more costly than Stage 1. For each stage, we give

the inference rules for implementing for its reduction.

3.3.1 Stage 1. Calling-Context Reduction. We abstract program

paths with calling contexts so that the resulting UAF analysis is

sound, scalable and highly precise (with as few spurious correlations

as possible), as already motivated in Section 2. To this end, we

would like to replace P(lf) ×P(lu) in (1) with a coarser abstraction

C̃(lf) × C̃(lu) expressed in terms of calling contexts, reduced as

shown in Figure 4, so that ST in (1) can simplify to STC :

[Spatio-Temporal Calling Context Reduction]

ST
C (

free(p@lf), use(q@lu)
)
�

∃ (c̃f , c̃u) ∈ C̃(lf)× C̃(lu) : (c̃f ,lf) � (c̃u,lu) ∧ (c̃f ,p) � (c̃u,q)

(6)

How do we construct C̃(lf) × C̃(lu)? The basic idea was illus-
trated earlier conceptually in Figure 4 with an oracle fully-context-

sensitive pointer analysis, pt∞. To reduce the number of context

pairs in C̃(lf) × C̃(lu), we should remove their redundant prefixes
if they do not help separate calling contexts as desired.

However, pt∞ is non-existent as it is not scalable for reasonably

large programs. Below we obtain C̃(lf) × C̃(lu) equivalently by
using pt1, which is a flow- and context-sensitive pointer analysis

in Stage 1 (Section 3.2), with the intuition illustrated in Figure 8:

332

Spatio-Temporal Context Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

[CTX-R]

(h̃p, o) ∈ pt1([], p) (h̃q, o) ∈ pt1([], q) h̃p is a suffix of h̃q

lo = car(h̃q ⊕[o]) lp = car(c̃f ⊕[lf]) lq = car(c̃u ⊕[lu])

lp and lq reside in the function containing lo or its callee, s.t. lp � lq
c̃f is a calling context for lf c̃u is a calling context for lu

(c̃f , c̃u) ∈ C̃(lf) × C̃(lu)

(7)

Figure 8 illustrates a total of two cases in which(
free(p@lf), use(q@lu)

)
may be potentially a UAF bug. The

scenario illustrated earlier in our motivating example given in

Figure 4 is a special instance of one of these two cases.

As shown in Figure 6, pt([],v) is computed on-demand by travers-
ing interprocedurally the statements producing values that may

flow into v , under all possible calling contexts for the function
containing v , as indicated by []. If v is found to point to o under
context c when [ADDR] is applied, then (c,o) ∈pt([],v). Note that c
is a suffix of a calling sequence from main() to o’s allocation site.

Let us examine [CTX-R]. As (h̃p ,o) ∈ pt1([],p) and (h̃q ,o) ∈

pt1([],q), (cf ,p) � (cu ,q) holds if h̃p is a suffix of h̃q , i.e., the set of

full calling contexts (from main()) abstracted by h̃p is a superset

of the set of full calling contexts abstracted by h̃q , in which case,

(h̃p ,o) and (h̃q ,o) may represent a common (concrete) object.
The common caller, Com, for malloc(), free(p) and

use(q), is the function containing line lo . Lines lp and lq re-

side in either Com (Figure 8(a)) or a (direct or indirect) callee of

Com (Figure 8(b)) (In the special case, lp = lf and lq = lu hold).

Thus, c̃f is simply the calling context from lp to lf such that

lp = car(c̃f ⊕[lf]). Similarly, c̃u is derived.

Let ST∞ be obtained from STC such that C̃(lf) × C̃(lu)
are now expressed in terms of all full calling contexts

possible. By [CTX-R], STC
(
free(p@lf),use(q@lu)

)
⇐⇒

ST
∞

(
free(p@lf), use(q@lu)

)
. Thus, STC is sound and as precise

as possible by using calling contexts. In addition, STC is efficiently

verifiable, as motivated in Section 3 and validated later.

By construction, (cf u⊕c̃f ,p)
� (c ′
f u
⊕c̃u ,q), i.e.,p andq are must-

not-aliases if cf u and c
′
f u

are different context prefixes. Now, (cf u ⊕

c̃f , lf) � (c ′
f u

⊕ c̃u , lu) holds, where cf u = c ′
f u
, i.e., (c̃f , lf) �

(c̃u , lu) holds, only if lp appears lexically before lq in the function
containing lo or its callee in [CTX-R]. To check (c̃f ,p) � (c̃u ,q) for
these reachable pairs, we rely on pt1(c̃f ,p) and pt1(c̃u ,q).
Let us apply [CTX-R] to formally analyze the UAF pair(

free(p@ln34), use(q@ln31)
)
in Figure 3. By computing on-

demand the points-to sets of p and q flow- and context-sensitively,

we obtain pt1([], p) = pt1([], q) = {(c2,o), (c3,o)}. Let us consider
(c2,o) only. For this example, considering also (c3,o) adds no in-

formation. As h̃p = h̃q = [c2], we have lo = car([c2,o]) = c2.
Thus, com() is the common caller that transitively calls malloc(),

free(p) and use(q). As lp ∈ {c5, c7} and lq ∈ {c4, c6}, we obtain

C̃(lf) × C̃(lu) = {[c5, c9], [c7, c9]} × {[c4, c8], [c6, c8]}. Finally, the
UAF pair is filtered out as a false alarm, as discussed in Section 2.1.

3.3.2 Stage 2. Path Reduction. We improve calling-context re-

duction by augmenting the calling contexts c̃ ∈ C̃(l) from Stage 1

with path guards τ̃ ∈ G̃(l), thus achieving path reduction. As a

Common Caller

F

F

T

T

xfree

F
T

෦ܿ௙ =[ܿଵ]

෦ܿ௨ =[ܿଶ]

xuse

Entry ଵܿ ܿ݊݀1ܿଵ: xfree()

ܿଶ: xuse()

ܿ݊݀2
Return

Entry ௙݈ ܿ݊݀3݈௙: free(p)Return

Entry݈௨ ܿ݊݀4݈௨: use(q)Return

F
T

= ෦߬௙ ∧Guard(݈௙, ܿଶ) ∧Guard(Entry݈௨, ݈௨) = ܿ݊݀1 ∧ ܿ݊݀3 ∧ ܿ݊݀2 ∧ ܿ݊݀4෦࢛࣎ = Guard(Entry ଵܿ, ܿଵ) ∧ Guard(Entry ௙݈, ݈௙) = ܿ݊݀1 ∧ ܿ݊݀3෦ࢌ࣎
Figure 9: Adding path guards to calling contexts in [PAT-R].

result, STC is refined to STP by considering path-sensitivity:

[Spatio-Temporal Path Reduction]

ST
P (

free(p@lf), use(q@lu)
)
�

∃ (
(c̃f , τ̃f), (c̃u, τ̃u)

)
∈

(
(C̃(lf)× G̃(lf)

)
×

(
C̃(lu)× G̃(lu)

)
:

((c̃f , τ̃f), lf)� ((c̃u, τ̃u), lu) ∧ ((c̃f , τ̃f), p)� ((c̃u, τ̃u), q)

(8)

where
(
C̃(lf) × G̃(lf)

)
×

(
C̃(lu) × G̃(lu)

)
is constructed below:

[PAT-R]

c̃f ∈ C̃(lf) c̃u ∈ C̃(lu) τ̃f =
∧

ci ∈c̃f ⊕[lf]

Guard(ENTRYci , ci)

τ̃u = τ̃f ∧ Guard(lf , car(c̃u⊕[lu])) ∧
(∧
ci ∈ cdr(c̃u ⊕[lu])

Guard(ENTRYci , ci)
)

IsFeasible(τ̃u)(
(c̃f , τ̃f), (c̃u , τ̃u)

)
∈

(
C̃(lf) × G̃(lf)

)
×

(
C̃(lu) × G̃(lu)

)
Figure 9 illustrates the intraprocedural paths captured by these

guards (marked by different colors). The interprocedural path from

xfree() to the common caller and the interprocedural path from

the common caller to xuse() are distinguished by calling contexts.

ENTRYci denotes the entry statement of the function containing

the point ci . Thus, τ̃f represents the path from the entry of the

function containing the first call site in c̃f to free(p@lf), and τ̃u for
use(q@lu) consists of three parts: (i) τ̃f , (ii) Guard(lf , car(c̃u⊕[lu])),
which represents the path from lf to the first call site in c̃u , and (iii)∧

ci ∈cdr(cu⊕[lu])
Guard(ENTRYci , ci), which is similarly defined as

τ̃f . Given a sequence, car returns its first element and cdr returns
the rest in the sequence. We also check the feasibility of τ̃u (and τ̃f
implicitly) by using an SMT solver to enforce branch correlation.

ST
P is efficiently verifiable. For �, (c̃f , lf) � (c̃u , lu) =⇒

((c̃f , τ̃f), lf) � ((c̃u , τ̃u), lu). For �, we check ((c̃f , τ̃f),p) �
((c̃u , τ̃u),q) by querying pt2((c̃f , τ̃f),p) and pt2((c̃u , τ̃u),q).

Let us see how
(
free(p@ln4), use(p@ln7)

)
in Figure 5 is re-

ported as a UAF warning in Stage 1 (with calling-context re-

duction) but removed as a false alarm in Stage 2 (with path re-

duction). In Stage 1, C̃(ln4) × C̃(ln7) = {([], [])} by applying

[CTX-R]. As ([], ln4)� ([], ln7) and ([], p@ln4)� ([], p@ln7) (since
pt1([], p@ln4) = {o1} and pt1([], p@ln7) = {o1,o2}), a UAF warn-
ing is issued. Let us now apply [PAT-R]. We find that τ̃f = cnd

encodes the path from the entry of the function foo() to line 4. Sim-

ilarly, τ̃u = cnd∧ true∧ true = cnd encodes the path from the entry

to line 7 via line 4. Thus, (([],cnd), ln4) � (([],cnd), ln7). We obtain(
C̃(ln4) × G̃(ln4)

)
×

(
C̃(ln7) × G̃(ln7)

)
=

{(
([],cnd), ([],cnd)

)}
. As

pt2(([], cnd),p@ln4) = {([], cnd,o1)} and pt2(([], cnd), p@ln7) =
{([],cnd,o2)}, we have (([],cnd),p@ln4)
� (([],cnd),p@ln7). Thus,(
free(p@ln4), use(p@ln7)

)
has been filtered out as a false alarm.

333

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue

4 IMPLEMENTATION

We have implemented CRed in LLVM (3.8.0). The source files of a

program are compiled under “-O0” into bit-code by clang front-end

and then merged using the LLVM Gold Plugin at link time to pro-

duce a whole program bc file. For debugging purposes, LLVM under

“-O1” or higher flags behaves non-deterministically on undefined

(i.e., undef) values [55], making bug detection nondeterministic.

We have implemented our demand-driven pointer analysis, by

operating on the def-use chains computed by the open-source tool,

SVF [43], field-sensitively but flow- and context-insensitively using

Andersen’s algorithm [4]. A program’s call graph is built on the fly

and points-to sets are represented using sparse bit vectors.

In static analysis, a linked list is modeled finitely. Thus, a node

in a points-to cycle is not considered for UAF detection (to avoid

false alarms), as it may represent many different concrete nodes.

Arrays must be approximated in static analysis. When comput-

ing� with a pointer analysis, arrays are considered monolithic.

When computing � , we distinguish different array elements in-
traprocedurally. LLVM’s ScalarEvolution pass is applied to reason

about must-aliases between two array accesses intraprocedurally.

Path guards are encoded by BDDs (Binary Decision Diagrams)

using CUDD-2.5.0 [37]. For path feasibility, IsFeasible(τ̃u) in [PAT-R]
is checked by an SMT solver, known as Z3 [13].

5 EVALUATION
We show that CRed is efficient and effective in detecting UAF bugs

in real-world programs without generating excessively many false

alarms, by answering three research questions (RQs):
RQ1: Is CRed effective in detecting existing UAF bugs?

RQ2: Can CRed find (true) UAF bugs efficiently with a low false

positive rate in programs with millions of lines of code?

RQ3: What are the patterns of UAF bugs detected?

5.1 Methodology

CRed is fully automatic without requiring user annotations. To

answer RQ1 and RQ2, we compare CRed with four state-of-the-art

source-code analysis tools: (1) CBMC (a bounded model checker

for C/C++) [22], (2) Clang (an abstract interpreter for C/C++ in

LLVM) [3], (3) Coccinelle (a pattern-based bug detector for C) [33],

and (4) Supa (a flow- and context-sensitive demand-driven pointer

analysis for C used for detecting UAF bugs according to STSupa in

(2) [42]. To answer RQ3, we perform manual inspection in real code

to check whether a reported UAF warning is a bug or not.

5.2 Benchmarks

To answer RQ1 (for ground truth), we use all the C test cases in

Juliet Test Suite (JTS) [1], including 138 known UAF vulnerabilities.

Each test case consists of 100 - 500 lines of code extracted from

real-world applications. To answer RQ2 and RQ3 (in order to test

the practicality of CRed), we use 10 widely-used open-source C

applications, totaling over 3 MLOC, given in Table 1.

5.3 Experimental Setup
CBMC is configured to run as a UAF detector by enabling “–pointer-

check” and disabling the other checks. To ensure that CBMChandles

loops identically as CRed (as described in Section 3.1.2), every loop

is unrolled by specifying “-unwind 2”. To ensure termination, the

Table 1: Benchmarks.

Program Version KLOC #Pointers #Frees #Uses
bison 3.0.4 113 102679 299 20163
curl 7.52.2 188 16432 249 2179
ed 1.1 3 1062351 17 1604
grep 2.21 118 1692834 193 5910
ghostscript 9.14 1693 24067 489 255891
gzip 1.6 644 106458 66 3904
phptrace 0.3 6 354077 39 1344
redis 3.2.6 133 37793 782 59056
sed 4.2 38 548267 221 6969
zfs 0.7.0 327 52629 680 6162

per-program analysis budget for CBMC is set as 3 days. To use

Clang, each program is compiled with “scan-build ./configure” and

“scan-buildmake”, following its official usermanual [3]. Coccinelle

is invokedwith spatch --sp-file, with the UAF patterns specified

with its official UAF script, osdi_kfree.cocci. Supa is used for

finding UAF bugs according to the analysis given in (2).

Both Supa and CRed share the same pre-analysis, which is per-

formed with Andersen’s algorithm [4] field-sensitively but flow-,

context- and path-insensitively. In both cases, the budget for one

points-to query is set as 300, 000 (the maximum number of def-use

chains traversable). For any larger budget, both Supa and CRed

take longer to run but exhibit small improvements in precision.

For CRed, we apply one optimization in Stage 2 to reduce

the human effort required in inspecting warnings. Consider

two warnings, B1 =
(
free(p@lf), use(q1@l1u)

)
and B2 =(

free(p@lf), use(q2@l2u)
)
, with the same free site. It suffices to

report B1 only, if B1 is a bug whenever B2 is and B2 is a false alarm

whenever B1 is. This happens if (1) pt2((c̃
1
u , τ̃

1
u),q1) includes all the

objects in pt2((c̃
2
u , τ̃

2
u),q2) and (2) τ̃

2
u =⇒ τ̃ 1u (solved by Z3).

Our experiments were done on a 3.0 GHZ Intel Core2 Duo pro-

cessor with 128 GB memory, running RedHat Enterprise Linux 5

(2.6.18). The analysis time of a program is the average of 3 runs.

5.4 Results and Analysis

5.4.1 RQ1: Recall (i.e., Hit Rate). We assess whether CRed

is capable of locating the 138 known UAF bugs in JTS [1]. As dis-

played in Figure 10, CRed finds all the 138 bugs, just as CBMC and

Supa do, but Clang and Coccinelle detect only 36 and 126 bugs,

respectively, with no false alarms produced by any tool.

0 20 40 60 80 100 120

CRed
Supa

Coccinelle
Clang
CBMC

126

138

36

Figure 10: Hit rates for the 138 bugs in JTS: CBMC (100%),

Clang (26%), Coccinelle (91%), Supa (100%) and CRed (100%).

CRed achieves a total recall, i.e., a 100% hit rate in 3.7 seconds.

CBMC, as a verification tool, also achieves a total recall but in 125.5

seconds, the longest among all the five tools. Supa, as a sound

pointer analysis, achieves a total recall in 3.0 seconds.

Both Clang and Coccinelle miss some bugs. Clang finds only

36 bugs in 2.5 seconds with a hit rate of 26%. Clang fails to detect

102 out of 138 UAF bugs for several reasons: (i) it lacks a pointer

analysis, (ii) it performs only some limited interprocedural analysis

through inlining, and (iii) it reasons about loops very conservatively.

334

Spatio-Temporal Context Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Experimental results (#T:#True Positives (Bugs) and #F: #False Positives (i.e., False Alarms)).

Program

CBMC Clang Coccinelle Supa CRed
Report Time Report Time Report Time Report Time #Warnings Context Reduction Report Time
#T #F (secs) #T #F (secs) #T #F (secs) #T #F (secs) Pre CS PS Before After #T #F (secs)

bison 0 0 > 259200 0 0 113 0 18 7 0 1044 1793 1640 352 1 7.3 × 1015 2.0 × 105 0 1 1904
curl 0 0 > 259200 0 0 355 0 8 53 0 694 27 699 82 0 3.3 × 107 8.2 × 103 0 0 668
ed 0 0 68553 0 0 18 0 0 1 0 34 1 34 32 2 6.3 × 104 3.6 × 103 0 2 4
grep 0 0 > 259200 0 0 110 0 18 9 1 537 362 630 493 2 1.1 × 107 3.0 × 105 1 1 2023
ghostscript 0 0 > 259200 0 0 2007 0 23 68 0 1944 2556 2630 1038 3 6.4 × 1015 1.6 × 105 0 3 2805
gzip 0 0 > 259200 1 0 68 0 12 3 1 381 3 382 117 1 7.1 × 108 3.6 × 103 1 0 4
phptrace 0 0 > 259200 0 0 29 0 0 1 1 192 1 268 5 1 7.0 × 105 3.2 × 103 1 0 2
redis 0 0 > 259200 0 2 836 0 5 7 16 4187 13333 11019 395 20 1.1 × 1015 4.0 × 103 16 4 13551
sed 0 0 > 259200 0 0 116 0 14 3 26 1887 160 2258 441 29 1.0 × 109 1.8 × 105 26 3 5102
zfs 0 0 > 259200 0 0 790 0 5 30 40 12195 180 22283 2730 73 2.3 × 1014 1.0 × 106 40 33 1271
Total 0 0 > 2401353 1 2 4442 0 103 179 85 23095 18416 41843 5685 132 1.5 × 1016 1.9 × 106 85 47 27334

Coccinelle detects 126 bugs in 19.7 seconds. It has missed 12

bugs due to some unsound search-space reduction heuristics used.

One is concerned with matching a free site with its use sites. Given

a free site, Coccinelle examines only the use sites reachable along

the forward edges in the program’s call graph. Thus, any UAF

bug will be missed if its free site resides in a wrapper. Another is

related to the limited alias analysis in Coccinelle. Given a free

site free(p), Coccinelle considers the aliases for ∗p by tracking
only the value-flow of p forwards along the control flow via only a

sequence of copy assignments on top-level variables. Thus, an alias

between ∗p and ∗q (for a use(q)) that is formed before free(p) or
indirectly via address-taken variables in terms of loads and stores

will be missed. All the 12 bugs in JTS are missed this way.

5.4.2 RQ2: Bug-Finding Ability. We assess how efficiently

and effectively CRed finds new UAF bugs in the 10 real-world appli-

cations (Table 1). Table 2 gives the results. CRed issues 132 warnings

including 85 bugs in 27,334 seconds (7.6 hours), starting from 41,843

warnings issued by its pre-analysis. However, the four existing tools

are either unscalable by terminating within 3 days only for one

application (CBMC) or impractical by reporting virtually no bugs

(Clang and Coccinelle) or excessively many false alarms (Supa).

CBMC does not scale yet to large codebases. It spends 68,553

seconds, i.e., 19.0 hours in analyzing ed (the smallest with 3 KLOC)

but cannot terminate for each remaining application in 3 days. As

a result, CBMC detects no UAF bugs (as ed is absent of UAF bugs).

Clang reports 3 warnings including only 1 (intraprocedurally-

detectable) bug, which is also found by CRed, in 1.2 hours. Interest-

ingly, Clang has even a higher false positive rate than CRed.

Coccinelle reports 103 warnings, which are all false alarms by

manual inspection, in 179.0 seconds. Coccinelle fails to detect any

true bug due to mainly its two unsound heuristics that are described

above in Section 5.4.1. Specifically, among the 85 bugs detected by

CRed, 84 bugs require tracking the backward (i.e., return) edges of

wrappers for free sites, with one exception in gzip, which, however,

requires analyzing the aliasing relations for address-taken variables.

In addition, all the 26 bugs in sed and 32 bugs in zfs also require

the value flows of address-taken variables to be tracked.

Supa also starts with the same 41,843 UAF warnings pre-

computed by CRed’s pre-analysis. Being sound, Supa reports the

same 85 bugs found by CRed but also 23,180 warnings (with both

as expected). These false alarms are the spurious spatio-temporal

correlations introduced in STSupa in (2), as motivated in Section 2.

0%
20%
40%
60%
80%

100%
Pre-Analysis Context-Sensitive Analysis Path-Sensitive Analysis

Figure 11: Percentage distribution of CRed’s analysis times.

CRed is effective in finding new UAF bugs in real-world applica-

tions. By examining manually the 132 warnings reported, we found

85 to be bugs and 47 to be false positives. These false alarms are

issued due to mainly imprecise handling of complex path condi-

tions (among others as explained in Section 5.5). Clang finds only

1 bug in gzip, which is also found by CRed, among the 3 warnings

reported. The other 2 warnings (in sed) are false alarms, due to its

lack of pointer analysis. These 2 false alarms are not reported by

CRed. CRed is also highly effective in filtering out false alarms in

its two stages. Let wi be the warnings produced by Stage i . The
false alarm elimination (FAE) rate at Stage i , where 1 � i � 2, is

given by (wi−1 −wi)/wi−1. The two stages (CS and PS in Table 2)

are effective, with their average FAE rates being 68.7% and 95.8%.

CRed is also efficient in its two stages, as shown in Figure 11, by

using increasingly more precise yet more expensive analyses on

handling increasingly fewer UAF warnings (as validated in Table 2).

In Stage 1 (context-sensitive analysis), context reduction is signifi-

cant, as revealed in Columns 17 – 18 in Table 2. Otherwise, Stage 1

would run for 2 × 109 days for the 10 applications (estimated based

on the per-query time consumed in), implying that Supa would be

unscalable (as its core pointer analysis pt1 is used in [CTX-R]).

Given its effectiveness, CRed is the most scalable interprocedu-

ral UAF detector reported (to the best of our knowledge). CRed

spends just 7.6 hours in analyzing the 10 applications (totaling 3+

MLOC). The analysis time for a program includes the times elapsed

in its two stages and its pre-analysis. For Clang and Coccinelle,

ghostscript takes the longest to analyze since it is the largest

with 1693 KLOC. For CRed and Supa, redis takes the longest since

it has the second largest number of UAF candidate pairs, i.e., 11,019

pairs to be analyzed and complex constraints to be solved by Z3.

5.4.3 RQ3: Understanding UAF Bugs. There are 85 UAF

bugs detected by CRed. We first examine two representative pat-

terns in Figures 12(a) and (b) and then discuss these bugs briefly.

Figure 12(a) illustrates three UAF bugs found in sed (counted as

one in Column 19 in Table 2, as discussed in Section 5.3). Under

335

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue

//lib/regexec.c
reg_errcode_t re_search_internal (...) {

for (;; match_first += incr) {
match_last = check_matching (&mctx, ...);
if (match_last == REG_ERROR)//REG_ERROR=-2

return err;
}

}
Idx check_matching (re_match_context_t *mctx, ...) {

if (BE (new_entry == NULL, 0)) {
free (mctx->bkref_ents);
return REG_ESPACE; //REG_ESPACE=-12

}
mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1;
mctx->bkref_ents[mctx->nbkref_ents].node = node;
mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;

}

643
757
862
866
869

1116
4280
4282
4283

4292
4294
4295

(a) Three UAF bugs in sed

}
m
mm
m

}

m
m
m

//deps/lua/src/strbuf.c
void strbuf_free(strbuf_t *s) {

free(s);
}
//redis/deps/lua/src/lua_cjson.c
void json_check_encode_depth(..., strbuf_t *json)
{ strbuf_free(json); }
void json_append_data(..., strbuf_t *json) {

json_check_encode_depth(..., json);
json_append_array(..., json, ...);

}
void json_append_array(..., strbuf_t *json, ...)
{ strbuf_append_char(json, '['); }
//deps/lua/src/strbuf.h
void strbuf_append_char(strbuf_t *s, const char c) {

s->buf[s->length++] = c;
}

104
113

536
553
660
680
683

566
571

116
119

(b) Two UAF bugs in redis

s->bu s->len

Figure 12: A case study for some false alarms eliminated and some bugs reported by CRed in real-world applications.

a certain path condition, the program frees mctx->bkref_ents

(line 4282) and returns an error flag REG_ESPACE (line 4283).

Unfortunately, the error is not captured later in line 866,

since REG_ESPACE � REG_ERROR, causing the freed pointer

mctx->bkref_ents to be dereferenced in lines 4292 – 4295.

Figure 12(b) gives two UAF bugs (counted as one in Column 19 in

Table 2) in redis. In function json_append_data (line 660), json is

indirectly freed in line 680 by calling json_check_encode_depth,

which in turn calls strbuf_free (line 553) to free the object

(line 113). After that, json_append_data calls json_append_array

(line 683) with json passed as a parameter, where the freed object

is accessed twice (line 119), resulting in two UAF bugs.

The 85 bugs detected by CRed reside in grep, gzip, phptrace,

redis, sed and zfs. Precise pointer analysis is essential. As men-

tioned earlier, 58 bugs (including 26 in sed and 32 in zfs) require

analyzing aliases for address-taken variables. The other 27 bugs,

which are found in grep, gzip, phptrace, redis and zfs, require

analyzing top-level pointers only. The 4 bugs in zfswould be missed

if some function pointers in the call sequence from their common

callers to their use sites were not resolved accurately. In addition,

interprocedural analysis is also essential. Consider Figure 8. The

average call sequence from a common caller to a free (use) site is

2.33 (3.71), with the longest being 4 (7). For only one out of the 85

bugs, its free and use sites reside directly in its common caller.

5.5 Limitations

As a static analysis, CRed can suffer from both false negatives and

false positives. CRed can miss bugs due to its unsound modeling

of loops (by analyzing two iterations), its unsound handling of a

linked list (by ignoring its nodes participating in points-to cycles),

and its unsound modeling of array access aliases (by using LLVM’s

ScalarEvolution pass for detecting must-aliases). In addition, in

non-compliant C programs, where one uses a pointer pointing to

one object to access another object with pointer arithmetic, pointer

analysis will be unsound, resulting in potentially false negatives.

CRed yields false alarms due to mainly (i) imprecise path re-

duction in [PAT-R], and (ii) imprecise points-to information for

out-of-budget points-to queries (in traversing points-to cycles).

6 RELATEDWORK

Detection. Almost all solutions are dynamic (instrumentation-

based). Debugging tools such as Valgrind [31] and Dr.Memory [9]

can detect a range of memory corruption errors including UAF bugs

at the expense of high runtime and memory overheads. Address-

Sanitizer [35] is another widely used dynamic tool. However, it can

miss dangling pointers that, when dereferenced, point to an object

that has reused the memory range. Undangle [10] detects dangling

pointers by performing a dynamic taint analysis. Its early detec-

tion approach can incur high runtime overheads. CETS [30] uses

an identifier-based scheme, which assigns a unique key for each

allocation region to identify dangling pointers. It has an overhead

of 116% in order to provide complete memory safety.

Static tools dedicated to UAF detection are scarce, with [18]

focusing on binary code, for the reasons given in Section 1. General-

purpose memory-safety checking tools that can be used to detect

UAF bugs include CBMC [22], Clang [3], Coccinelle [33], and

Supa [42], which have been compared with CRed. Specialized tools

for detecting other types of bugs exist. Saturn [14, 50] detects mem-

ory leaks and null pointers by solving a Boolean satisfiability prob-

lem. FastCheck [11] and Saber [44, 45] find memory leaks on the

value-flow graph of a program. Buffer overflows can be detected

path-sensitively [24] or symbolically [27].

Protection. Instead of detecting UAF bugs, protection against

their exploitation can be made. For example, control flow in-

tegrity [15] prevents control-flow hijacking attacks due to UAF

buffer overflow exploits via runtime instrumentation. However, all

fine-grained solutions are too costly to be deployed in production

environments and all coarse-grained solutions are bypassable [15].

Cling [2] represents a safe memory allocator that restricts mem-

ory reuse to objects of the same type. Diehard [7] andDieharder [32]

apply a randomized memory allocator by providing probabilistic

safe guarantees. In these cases, UAF exploits are made harder but

not eliminated. Alternatively, FreeSentry [53] and DangNull [25]

invalidate the dangling pointers detected at runtime, at the expense

of high runtime and memory overheads.

7 CONCLUSION
We present CRed, a novel static detector for finding UAF bugs,

and demonstrate its effectiveness and efficiency in finding all the

known UAF bugs in Juliet Test Suite and new ones in multi-MLOC

C applications. CRed achieves this level of scalability, precision

and accuracy by making three advances: (i) a context reduction

technique for scaling CRed to large codebases, (ii) a multi-stage

approach for filtering false alarms earlier, and (iii) a field-, flow-,

context- and path-sensitive demand-driven pointer analysis for

providing the precise points-to information required.

336

Spatio-Temporal Context Reduction ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Juliet Test Suite 1.2. https://samate.nist.gov/SRD/testsuite.php.
[2] Periklis Akritidis. 2010. Cling: A memory allocator to mitigate dangling pointers.

In USENIX Security’10. 177–192.
[3] Clang Static Analyzer. http://clang-analyzer.llvm.org/.
[4] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-

ming language. Ph.D. Dissertation. DIKU, University of Copenhagen.
[5] George Balatsouras and Yannis Smaragdakis. 2016. Structure-Sensitive Points-To

Analysis for C and C++. In SAS’16. 84–104.
[6] Thomas Ball and Sriram K Rajamani. 2002. The SLAM project: Debugging system

software via static analysis. In POPL’02. 1–3.
[7] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic memory

safety for unsafe languages. In PLDI’06. 158–168.
[8] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. 2007. The

software model checker Blast. International Journal on Software Tools for Tech-
nology Transfer 9, 5-6 (2007), 505–525.

[9] Derek Bruening andQin Zhao. 2011. Practical memory checkingwith Dr.Memory.
In CGO’11. 213–223.

[10] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: Early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In ISSTA’12. 133–143.

[11] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical memory
leak detection using guarded value-flow analysis. In PLDI’07. 480–491.

[12] Thurston HY Dang, Petros Maniatis, and David Wagner. 2017. Oscar: A practical
page-permissions-based scheme for thwarting dangling pointers. In USENIX
Security’17. 815–832.

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
TACAS’08. 337–340.

[14] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable
path-sensitive analysis. In PLDI’08. 270–280.

[15] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On the
weaknesses of fine-grained control flow integrity. In CCS’15. 901–913.

[16] Manuel Fähndrich and Francesco Logozzo. 2010. Static contract checking with
abstract interpretation. In FoVeOOS’10. 10–30.

[17] Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. 2017. Boosting the
Precision of Virtual Call Integrity Protection with Partial Pointer Analysis for
C++. In ISSTA’17. 329–340.

[18] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. 2014. Statically detect-
ing use after free on binary code. Journal of Computer Virology and Hacking
Techniques 10, 3 (2014), 211–217.

[19] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions
of lines of code. In CGO’11. 289–298.

[20] Nevin Heintze and Olivier Tardieu. 2001. Demand-Driven Pointer Analysis. In
PLDI’01. 24–34.

[21] Julien Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, and Xavier Rival. 2011. Static analysis by abstract
interpretation of embedded critical software. ACM SIGSOFT Software Engineering
Notes 36, 1 (2011), 1–8.

[22] Daniel Kroening andMichael Tautschnig. 2014. CBMC–CBoundedmodel checker.
In TACAS’14. 389–391.

[23] William Landi and Barbara G Ryder. 1992. A safe approximate algorithm for
interprocedural aliasing. In PLDI’92. 235–248.

[24] Wei Le and Mary Lou Soffa. 2008. Marple: A demand-driven path-sensitive buffer
overflow detector. In FSE’08. 272–282.

[25] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim,
Long Lu, and Wenke Lee. 2015. Preventing use-after-free with dangling pointers
nullification.. In NDSS’15.

[26] Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to analysis with
efficient strong updates. In POPL’11. 3–16.

[27] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2010. Practical and effective
symbolic analysis for buffer overflow detection. In FSE’10. 317–326.

[28] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the performance
of flow-sensitive points-to analysis using value flow. In FSE’11. 343–353.

[29] Ravichandhran Madhavan and Raghavan Komondoor. 2011. Null dereference ver-
ification via over-approximated weakest pre-conditions analysis. In OOSPLA’11.
1033–1052.

[30] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: Compiler enforced temporal safety for C. In ISMM’10. 31–40.

[31] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In PLDI ’07. 89–100.

[32] Gene Novark and Emery D Berger. 2010. DieHarder: Securing the heap. In CCS’10.
573–584.

[33] Mads Chr Olesen, René Rydhof Hansen, Julia L Lawall, and Nicolas Palix. 2014.
Coccinelle: Tool support for automated CERT C secure coding standard certifica-
tion. Science of Computer Programming 91 (2014), 141–160.

[34] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In POPL’95. 49–61.

[35] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In USENIX ATC’12.
309–318.

[36] Lei Shang, Xinwei Xie, and Jingling Xue. 2012. On-demand dynamic summary-
based points-to analysis. In CGO’12. 264–274.

[37] Fabio Somenzi. CUDD: CU Decision Diagram Package (3.0.0). http://vlsi.colorado.
edu/~fabio/CUDD/cudd.pdf.

[38] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016.
Boomerang: Demand-driven flow-and context-sensitive pointer analysis for Java.
In ECOOP’16. 22:1–22:26.

[39] Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive
points-to analysis for Java. In PLDI’16. 387–400.

[40] Yulei Sui, Peng Di, and Jingling Xue. 2016. Sparse flow-sensitive pointer analysis
for multithreaded programs. In CGO’16. 160–170.

[41] Yulei Sui, Yue Li, and Jingling Xue. 2013. Query-directed adaptive heap cloning
for optimizing compilers. In CGO’13. 1–11.

[42] Yulei Sui and Jingling Xue. 2016. On-demand strong update analysis via value-
flow refinement. In FSE’16. 460–473.

[43] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural static value-flow analysis
in LLVM. https://github.com/unsw-corg/SVF. In CC’16. 265–266.

[44] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using
full-sparse value-flow analysis. In ISSTA’12. 254–264.

[45] Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software Engineering
40, 2 (2014), 107–122.

[46] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. 2011. SPAS: Scalable Path-
Sensitive Pointer Analysis on Full-Sparse SSA. In APLAS’11. 155–171.

[47] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:
Scalable use-after-free detection.. In EuroSys’17. 405–419.

[48] Kostyantyn Vorobyov and Padmanabhan Krishnan. 2010. Comparing model
checking and static program analysis: A case study in error detection approaches.
In SSV’10. 1–7.

[49] National vulnerability database. http://nvd.nist.gov/.
[50] Yichen Xie andAlex Aiken. 2007. Saturn: A scalable framework for error detection

using boolean satisfiability. ACM Transactions on Programming Languages and
Systems 29, 3 (2007), 16.

[51] Wei Xu, Daniel C DuVarney, and R Sekar. 2004. An efficient and backwards-
compatible transformation to ensure memory safety of C programs. In FSE’12.
117–126.

[52] Sen Ye, Yulei Sui, and Jingling Xue. 2014. Region-based selective flow-sensitive
pointer analysis. In SAS’14. 319–336.

[53] Yves Younan. 2015. FreeSentry: Protecting against use-after-free vulnerabilities
due to dangling pointers. In NDSS’15.

[54] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. 2010.
Level by level: Making flow-and context-sensitive pointer analysis scalable for
millions of lines of code. In CGO’10. 218–229.

[55] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic.
2012. Formalizing the LLVM intermediate representation for verified program
transformations. In POPL’12. 427–440.

[56] Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In
POPL’08. 197–208.

337

